Supporting Information

Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective \textit{aza}-Michael reaction

Laura L. Taylor,\textsuperscript{a} Frederick W. Goldberg\textsuperscript{b} and King Kuok (Mimi) Hii\textsuperscript{a,*}

\textsuperscript{a} Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, U.K.; E-mail: mimi.hii@imperial.ac.uk

\textsuperscript{b} AstraZeneca, Mereside, Alderley Park, Cheshire SK10 4TG, U.K. E-mail: frederick.goldberg@astrazeneca.com.

\textbf{Figure S1.} Chiral HPLC chromatograph of \textit{6b} before and after recrystallisation.

Copies of $^1$H and $^{13}$C NMR spectra of isolated compounds:

\textbf{Figure S2.} $^1$H and $^{13}$C NMR spectra of \textit{7a}.

\textbf{Figure S3.} $^1$H and $^{13}$C NMR spectra of \textit{7b}.

\textbf{Figure S4.} $^1$H and $^{13}$C NMR spectra of \textit{7c}.

\textbf{Figure S5.} $^1$H and $^{13}$C NMR spectra of \textit{7d}.

\textbf{Figure S6.} $^1$H and $^{13}$C NMR spectra of \textit{6a}.

\textbf{Figure S7.} $^1$H and $^{13}$C NMR spectra of \textit{6b}.

\textbf{Figure S8.} $^1$H and $^{13}$C NMR spectra of \textit{6c}.

\textbf{Figure S9.} $^1$H and $^{13}$C NMR spectra of \textit{6d}.

\textbf{Figure S10.} $^1$H and $^{13}$C NMR spectra of \textit{14}.

\textbf{Figure S11.} $^1$H and $^{13}$C NMR spectra of \textit{15}.

\textbf{Figure S12.} $^1$H and $^{13}$C NMR spectra of \textit{16}.

\textbf{Figure S13.} $^1$H and $^{13}$C NMR spectra of \textit{17}.

\textbf{Figure S14.} $^1$H and $^{13}$C NMR spectra of \textit{18}.

\textbf{Figure S15.} $^1$H and $^{13}$C NMR spectra of \textit{19}.

\textbf{Figure S16.} $^1$H and $^{13}$C NMR spectra of \textit{5}.

\textbf{Figure S17.} $^1$H and $^{13}$C NMR spectra of \textit{1}.

\textbf{Figure S18.} $^1$H and $^{13}$C NMR spectra of \textit{2}.

\textbf{Figure S19.} $^1$H and $^{13}$C NMR spectra of \textit{4}.
Fig. S1 Chiral HPLC chromatograph of solid precipitate (left) and mother liquor (right) after recrystallisation of 6b (84% ee) from toluene-cyclohexane.
Figure S2: $^1$H and $^{13}$C NMR spectra of 7a.
Figure S3: $^1$H and $^{13}$C NMR spectra of 7b.
Figure S4. $^1$H and $^{13}$C NMR spectra of 7c.
Figure S5. $^1$H and $^{13}$C NMR spectra of 7d.
Figure S6. $^1$H and $^{13}$C NMR spectra of 6a.
Figure S7. $^1$H and $^{13}$C NMR spectra of 6b.
Figure S8. $^1$H and $^{13}$C NMR spectra of 6c.
Figure S9. $^1$H and $^{13}$C NMR spectra of 6d.
Figure S10. $^1$H and $^{13}$C NMR spectra of 14.
Figure S11. $^1$H and $^{13}$C NMR spectra of 15.
Figure S12. $^1$H and $^{13}$C NMR spectra of 16.
Figure S13. $^1$H and $^{13}$C NMR spectra of 17.
Figure S14. $^1$H and $^{13}$C NMR spectra of 18.
Figure S15. $^1$H and $^{13}$C NMR spectra of 19.
Figure S16. $^1$H and $^{13}$C NMR spectra of 5.
Figure S17. $^1$H and $^{13}$C NMR spectra of 1.
Figure S18. $^1$H and $^{13}$C NMR spectra of 2.
Figure S19. $^1$H and $^{13}$C NMR spectra of 4.