Nickel-Catalyzed C-P Coupling of Aryl Mesylates and Tosylates with H(O)PR¹R²

Chaoren Shen, Guoqiang Yang and Wanbin Zhang*

School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China

Table of Contents	
I. General details	p. S2
II. Experimental procedures and spectral data	p. S2
III. ¹ H NMR, ¹³ C NMR and ³¹ P NMR spectra copies of new compounds	p. S7
IV. References	p. S10

I. General Details

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without purification. All reactions were performed in flame-dried glassware under an atmosphere of dry nitrogen, and the workup was carried out in air, unless otherwise stated. CH₂Cl₂, DMF, NMP, DMSO, HMPA, toluene, pyridine and NEt₃ were distilled at atmospheric or reduced pressure over CaH₂ prior to use. Solvents 1, 4-dioxane, DME and THF were distilled from sodium benzophenone ketyl prior to use. NaH (65% in mineral oil) was degreased with n-hexane under N₂ prior to use. Column chromatographic purification of products was carried out using silica gel 60 (200~300 mesh). NMR spectra were recorded on a Varian MERCURY plus-400 (400 MHz, ¹H; 100 MHz, ¹³C; 162 MHz, ³¹P) spectrometer with chemical shifts reported in ppm relative to the residual deuterated solvent, the internal standard tetramethylsilane, or external 85% H₃PO₄ for ³¹P. Mass spectrometery analysis was carried out using an electrospray spectrometer Waters 4 micro quadrupole. Melting points were measured with SGW X-4 micro melting point apparatus.

II Experimental procedures and spectral data

 Table S1. Reaction condition screening^a

Entry	Catalyst	Ligand	Additive	Base	Temperature	Solvent	Isolated
					(°C)		yield
							(%)
1	-	-	Zn	DIPEA	100	DMF	0
2	Ni(acac) ₂	IPr•HCl	Zn	NaH	90	DMF	0
3	Ni(acac) ₂	IPr•HCl	Zn	NaH	60	THF	0
4	NiCl ₂	IPr•HCl	-	DABCO	100	DMF	0
5	NiCl ₂	IPr•HCl	Zn	DABCO	100	DMF	0
6	NiCl ₂	2,2'-bipy	Zn	-	100	DMF	0
7	NiCl ₂ (PCy ₃) ₂	-	Zn	NEt ₃	100	Toluene	0
8	NiCl ₂ (PCy ₃) ₂	-	Zn	DABCO	100	DMF	0
9	NiCl ₂ (dppe)	-	-	DABCO	100	DMF	0
10	NiCl ₂ (dppp)	-	-	DABCO	100	DMF	0
11	NiCl ₂ (dppf)	-	Zn	DIPEA	100	DMF	17
12	NiCl ₂	dppf	Zn	-	100	DMF	26
13	NiCl ₂	dppf	-	DABCO	100	DMF	0
14	NiCl ₂	dppf	Zn	-	100	1,4-dioxane	56 ^b
15	NiCl ₂ (dppf)	dppf	Zn	-	100	DMF	74 ^{<i>c</i>}
16	NiCl ₂ (dppf)	dppf	Zn	-	100	1,4-dioxane	30 ^c
17	NiCl ₂ (dppp)	dppp	Zn	-	100	DMF	0^{c}
18	NiCl ₂ (dppf)	dppf	Zn	-	100	DMA	30 ^c
19	NiCl ₂ (dppf)	dppf	Zn	-	100	DMF	52^d
20	NiCl ₂ (dppf)	dppf	Zn	-	80	DME	27 ^c
21	NiCl ₂ (dppf)	dppf	Zn	-	100	NMP	50^c

22	NiCl ₂ (dppf)	dppf	Zn	-	100	DMSO	0^c
23	NiCl ₂ (dppf)	dppf	Zn	-	100	HMPA	31 ^c
24	NiCl ₂ (dppf)	dppf	Zn	-	120	DMF	57 ^c
25	NiCl ₂ (dppf)	dppf	Zn	-	100	DMF	74 ^e
26	NiCl ₂ (dppf)	dppf	Zn	-	80	DMF	69 ^c
27	NiCl ₂ (dppf)	dppf	Zn	DIPEA	100	DMF	87 ^f
28	NiCl ₂ (dppf)	dppf	Zn	NEt ₃	100	DMF	78 ^f
29	NiCl ₂ (dppf)	dppf	Zn	DABCO	100	DMF	84 ^f
30	NiCl ₂ (dppf)	dppf	-	DIPEA	100	DMF	0^g

^{*a*} Unless otherwise stated, reaction conditions: phenyl mesylate (0.50 mmol), Ph₂P(O)H (0.60 mmol), catalyst (0.05 mmol), ligand (0.05 mmol), zinc dust (0.50 mmol), base (0.50 mmol), solvent (3 mL) under N₂. ^{*b*} ligand (0.15 mmol). ^{*c*} ligand (0.10 mmol). ^{*d*} ligand (0.05 mmol). ^{*e*} zinc dust (1.0 mmol). ^{*f*} base (1.0 mmol). ^{*g*} no zinc dust.

Preparation of Ni complex and ligand

 $NiCl_2(dppf)$ was prepared from $NiCl_2 \cdot 6H_2O$ and bisphosphine ligand dppf according to a literature procedure.^{1a} $NiCl_2(dppp)$ was synthesized from $NiCl_2 \cdot 6H_2O$ and bisphosphine ligand dppp according to a literature procedure.^{1b} $NiCl_2(PCy_3)_2$ was prepared from $NiCl_2 \cdot 6H_2O$ and monophosphine ligand PCy₃ according to a literature procedure.^{1c} IPr·HCl was prepared according to a literature procedure.^{1d}

Preparation of Aryl Mesylates or Aryl Tosylates

Phenyl mesylate (**1a**, CAS number: 16156-59-5)², phenyl tosylate (**1a**, CAS number: 640-60-8)², *p*-tolyl tosylate (**1b**, CAS number: 3988-96-5)², *m*-tolyl tosylate (**1c**, CAS number: 3955-72-4)², *o*-tolyl tosylate (**1d**, CAS number: 599-75-5)², 4-methoxyphenyl mesylate (**1e**, CAS number: 19013-30-0)², methyl 4-(tosyloxy)benzoate (**1f**, CAS number: 51207-43-3)², 3-methoxyphenyl tosylate (**1g**, CAS number: 3988-92-1)³, 2-naphthyl mesylate (**1h**, CAS number: 10290-91-2)², 1-naphthyl tosylate (**1i**, CAS number: 68211-49-4)³, 1,3-benzodioxol-5-ol mesylate (**1j**, CAS number: 128612-45-3)⁴ were prepared from their corresponding phenols with MsCl or TsCl in the presence of pyridine in CH₂Cl₂ according to known procedures.

Preparation of diarylphosphine oxide

Bis(4-methylphenyl)phosphine oxide (**2k**, CAS number: $2409-61-2)^5$, bis(4-methoxyphenyl)phosphine oxide (**2l**, CAS number: $15754-51-5)^5$, bis(4-(trifluoromethyl)phenyl)phosphine oxide (**2m**, CAS number: $15929-43-8)^6$ and bis(3,5-dimethylphenyl)phosphine oxide (**2n**, CAS number: $187344-92-9)^7$ were prepared from their corresponding Grignard reagents with diethyl phosphate in THF according to known procedures and their spectral data are in agreement with literature values.

Preparation of ethyl phenylphosphinate

Ethyl phenylphosphinate (CAS number: 2511-09-3) was prepared from dichloro(phenyl)-phosphine (DCPP) with ethanol according to a literature procedure.⁸

Procedure for activation of zinc dust

Acticvated zinc dust was prepared prior to use according to a literature procedure.⁹

General procedure for Ni-catalyzed cross-coupling of aryl mesylates or to sylate with $\rm H(O) PR^1R^2$

In a typical reaction, to an oven-dried 25 mL Schlenk tube was added NiCl₂(dppf) (50 µmol), dppf (0.10 mmol) and activated Zn dust (0.50 mmol). The tube was sealed with a rubber septum and then degassed by pumping and backfilling with nitrogen three times. DMF (1 mL) was added *via* a syringe. The reaction mixture was stirred at 80 °C for 0.5 h. During this time, the solution of mixture turned from yellow to red. DMF (2 mL) solution containing aryl mesylates or tosylates (0.50 mol), H(O)PR¹R² (0.60 mmol), and DIPEA (95 µL, 1.0 mmol) was added *via* a syringe through the rubber septum. The reaction mixture was stirred at 100 °C under a nitrogen atmosphere for 36 h. The reaction mixture was allowed to cool to room temperature and the DMF was evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂ (10 mL) and then washed with 5% HCl (3 × 5 mL) and H₂O (3 × 3 mL), and dried by Na₂SO₄. Solvent was evaporated *in vacuo* and the residue was purified by column chromatography (silica gel, petroleum ether/ethyl acetate/EtOH).

Phosphoryl triphenyl (3a, CAS Number: 791-28-6)¹⁰

White solid, ³¹P NMR (CDCl₃, 162 MHz): δ = 29.45; ¹H NMR (CDCl₃, 400 MHz): δ = 7.64-7.70 (m, 6H), 7.52-7.56 (m, 3H), 7.43-7.48 (m, 6H).

(4-Methylphenyl)diphenyl phosphine oxide (3b, CAS Number: 23081-74-5)¹⁰

White solid, ³¹P NMR (CDCl₃, 162 MHz): δ = 27.73; ¹H NMR (CDCl₃, 400 MHz): δ = 7.64-7.69 (m, 4H), 7.49-7.58 (m, 4H), 7.41-7.46 (m, 4H), 7.25-7.28 (m, 2H), 2.39 (s, 3H).

(3-Methylphenyl)diphenyl phosphine oxide (3c, CAS number: 6840-27-3)

White solid, mp: 123.7-124.2 °C; ³¹P NMR (CDCl₃, 162 MHz): $\delta = 30.53$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.68-7.63$ (m, 4H), 7.56-7.52 (m, 3H), 7.48-7.43 (m, 4H), 7.37-7.33 (m, 3H) 2.36 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 138.7$ (d, J = 12.7 Hz), 132.8 (d, J = 142.1 Hz), 133.0 (d, J = 3.6 Hz), 132.4 (d, J = 102.5 Hz), 132.7 (d, J = 9.5 Hz), 132.3 (d, J = 10.0 Hz), 132.1 (d, J = 1.9 Hz), 129.4 (d, J = 11.3 Hz), 128.7 (d, J = 12.4 Hz), 128.5 (d, J = 12.9 Hz), 21.66; HR-ESI-MS: [M+H]⁺ m/z calcd for : 293.1095, found: 293.1108.

(2-Methylphenyl)diphenyl phosphine oxide (3d, CAS number: 6840-26-2)¹¹

White solid, ³¹P NMR (CDCl₃, 162 MHz): $\delta = 31.71$; ¹H NMR (CDCl₃, 400 MHz): 7.68-7.61 (m, 4H), 7.56-7.38 (m, 7H), 7.27 (ddd, J = 14.0, 7.6, 0.4 Hz, 1H), 7.11 (m, 1H), 7.02 (ddd, J = 14.0, 7.6, 1.2 Hz, 1H), 2.45 (s, 3H).

(4-Methoxyphenyl)diphenyl phosphine oxide (3e, CAS Number: 795-44-8)¹⁰

White solid, ³¹P NMR (CDCl₃, 162 MHz): δ = 32.91; ¹H NMR (CDCl₃, 400 MHz): δ = 7.64-7.70 (m, 4H), 7.50-7.54 (m, 2H), 7.42-7.46 (m, 4H), 7.28-7.37 (m, 2H), 7.12-7.17 (m, 1H), 7.06 (dd, *J* = 8.9, 2.6 Hz), 3.77 (s, 3H).

(4-Carbomethoxyphenyl)diphenyl phosphine oxide (3f, CAS Number: 5032-55-3)¹²

White solid, ³¹P NMR (100MHz, CDCl₃): $\delta = 28.9$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.12$ (d, J = 8.2 Hz, 2H), 7.77 (dd, J = 11.4, 8.4 Hz, 2H), 7.64–7.69 (m, 4H), 7.46–7.60 (m, 6H), 3.93 (s, 3H). **(3-Methoxyphenyl)diphenyl phosphine oxide (3g**, CAS Number: 95278-09-4)¹⁰ White solid, ³¹P NMR (CDCl₃, 162 MHz): $\delta = 32.91$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.64-7.70$ (m, 4 H), 7.50-7.54 (m, 2H), 7.42-7.46 (m, 4H), 7.28-7.37 (m, 2H), 7.12-7.17 (m, 1H), 7.06 (dd, J = 8.9, 2.6 Hz), 3.77 (s, 3 H).

2-Naphthalenyldiphenyl phosphine oxide (3h, CAS Number: 28402-08-6)¹³

White solid, ³¹P NMR (CDCl₃, 162 MHz): $\delta = 31.32$; ¹H NMR (400 MHz, CDCl₃): $\delta = 8.27$ (d, J = 13.6 Hz, 1H), 7.88 (d, J = 9.6 Hz, 2H), 7.73-7.68 (m, 4H), 7.64-7.46 (m, 10H).

1-Naphthalenyldiphenyl phosphine oxide (**3i**, CAS Number: 3095-33-8)¹⁴ White solid, ³¹P NMR (CDCl₃, 162 MHz): $\delta = 33.12$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 8.58$ (d, *J* = 8.20 Hz, 1H), 8.01 (d, *J* = 8.08 Hz, 1H), 7.88 (d, *J* = 8.18 Hz, 1H), 7.66-7.71 (m, 4H), 7.52-7.56 (m, 2H), 7.43-7.50 (m, 6H), 7.35-7.39 (m, 1H), 7.26-7.32 (m, 1H).

1,3-Benzodioxol-5-yldiphenyl phosphine oxide (3j, CAS number: 209981-66-8)¹⁵

White solid, ³¹P NMR (CDCl₃, 162 MHz): δ = 34.53; ¹H NMR (CDCl₃, 400 MHz): δ = 7.66 (dd, *J* = 11.6, 7.5 Hz, 4H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.46 (t, *J* = 7.1 Hz, 4H), 7.18 (dd, *J* = 12.6, 8.0 Hz, 1H), 7.07 (d, *J* = 11.4 Hz, 1H), 6.88 (dd, *J* = 7.9, 2.1 Hz, 1H), 6.02 (s, 2H).

Bis(4-methylphenyl)phenyl phosphine oxide (3k, CAS number: 18957-70-5)¹⁶

Colorless slurry, ³¹P NMR (CDCl₃, 162 MHz): $\delta = 30.53$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.68-7.62$ (m, 2H), 7.53 (dd, J = 11.8, 8.0 Hz, 4H), 7.48 (m, 1H), 7.24 (dd, J = 8.4, 2.4 Hz, 4H), 2.38 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 142.6$ (d, J = 2.9 Hz), 133.0 (d, J = 102.5 Hz), 132.2 (d, J = 10.2 Hz), 132.0 (d, J = 8.7 Hz),131.9 (d, J = 3.2 Hz), 129.4 (d, J = 106.9 Hz), 129.4 (d, J = 12.6 Hz), 128.6 (d, J = 11.8 Hz), 21.7.

Bis(4-methoxypheny1)phenylphosphine oxide (31, CAS number: 799-55-3)¹⁷

White solid, mp: 96.5-97.4 °C; ³¹P NMR (CDCl₃, 162 MHz): $\delta = 30.36$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.61-7.54$ (m, 2H), 7.56 (dd, J = 11.2, 8.4 Hz, 4H), 7.51-7.49 (m, 1H), 7.45-7.41 (m, 2H), 6.94 (dd, J = 6.4, 1.8 Hz, 4H), 3.83 (s, 6H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 162.6$ (d, J = 1.8 Hz), 134.1 (d, J = 11.7 Hz), 133.3 (d, J = 104.3 Hz), 132.2 (d, J = 9.8 Hz), 131.9 (d, J = 2.7 Hz), 128.6 (d, J = 12.4 Hz), 124.0 (d, J = 110.2 Hz), 114.2 (d, J = 12.9 Hz), 55.5.

Bis(3, 5-bismethylphenyl)phenylphosphine oxide (3n)

White solid, mp: 158.6-159.2 °C; ³¹P NMR (CDCl₃, 162 MHz): $\delta = 30.89$; ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.68-7.63$ (m, 2H), 7.55-7.51 (m, 1H), 7.47-7.42 (m, 2H), 7.26 (d, J = 12.4 Hz, 4H), 7.15 (s, 2H), 2.31 (s, 12H); ¹³C NMR (CDCl₃, 100 MHz): $\delta = 138.3$ (d, J = 12.2 Hz), 133.9 (d, J = 2.3 Hz), 133.1 (d, J = 102.7 Hz), 132.4 (d, J = 102.6 Hz), 132.3 (d, J = 9.7 Hz), 131.9 (d, J = 2.2 Hz), 129.8(d, J = 10.0 Hz), 128.6 (d, J = 11.7 Hz), 21.56; HR-ESI-MS: [M+H]⁺ m/z calcd for :335.1565, found: 335.1574.

Diethyl phenylphosphonate (5a, CAS number: 1754-49-0)¹⁸

Oil, ¹H NMR (400 MHz,CDCl₃): δ = 7.82 (m, 2H), 7.55 (tq, *J* = 7.5, 1.4 Hz, 1H), 7.47 (m, 2H), 4.12 (m, 4H), 1.32 (td, *J* = 7.0, 0.5 Hz, 6H).

Diethyl *p***-tolylphosphonate (5b,** CAS number: 1754-46-7)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.68 (d, *J* = 8.9 Hz, 2H), 7.26 (d, *J* = 8.9 Hz, 2H), 4.04-4.18 (m, 4H), 2.41 (s, 3H), 1.31 (t, *J* = 6.9 Hz, 6H).

Diethyl *m***-tolylphosphonate (5c,** CAS number: 15286-13-2)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.57-7.67$ (m, 2H), 7.27-7.36 (m, 2H), 4.12-4.20 (m, 4H), 2.37 (s, 3H), 1.32 (t, J = 7.0 Hz, 6H).

Diethyl *o***-tolylphosphonate (5d,** CAS number: 15286-11-0)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.88-7.96 (m, 1H), 7.42-7.46 (m, 1H), 7.23-7.28 (m, 2H), 4.12 (m, 4H), 2.57 (s, 3H), 1.33 (t, *J* = 6.9 Hz, 6H).

Diethyl p-methoxyphenylphosphonate (5e, CAS number: 3762-33-2)¹⁸

Oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.72 (dd, *J* = 13.0, 9.0 Hz, 2H), 6.97 (dd, *J* = 9.0, 3.0 Hz, 2H), 4.04-4.13 (m, 4H), 3.83 (s, 3H), 1.30 (t, *J* = 7.3 Hz, 6H).

Diethyl 3-methoxyphenylphosphonate (**5g**, CAS number: 65442-22-0)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): δ = 7.32-7.40 (m, 3H), 7.07-7.10 (m, 1H), 4.05-4.18 (m, 4H), 3.85 (s, 3H), 1.33 (t, *J* = 6.9 Hz, 6H).

Diethyl naphthalen-2-yl phosphonate (5h, CAS number: 17067-93-5)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.41$ (d, J = 16.4 Hz, 1H), 7.84-7.93 (m, 3H), 7.71-7.76 (m, 1H), 7.51-7.59 (m, 2H), 4.17-4.23 (m, 4H), 1.32 (t, J = 7.3 Hz, 6H).

Diethyl naphthalen-1-yl phosphonate (5i, CAS number: 25944-75-6)¹⁸ Oil, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.47$ (d, J = 8.0 Hz, 1H), 8.22 (dd, J = 16.2, 7.0 Hz, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.87 (d, J = 7.2 Hz, 1H), 7.491-7.61 (m, 3H), 4.02-4.24 (m, 2H), 1.31 (t, J = 7.1 Hz, 6H).

Ethyl diphenylphosphinate (5j, CAS number: 1262219-69-1)¹⁹

Oil, ¹H NMR (CDCl₃, 400 MHz): δ = 7.64-7.66 (m, 4H), 7.47 (d, *J* = 7.56 Hz, 4H), 4.16 (m, 2H), 1.38 (m, 3H).

Ethyl (4-methylphenyl)phenylphosphinate (5k, CAS number: 26926-25-0)¹⁹ Oil, ¹H NMR (CDCl₃, 400 MHz): δ = 7.66 (d, *J* = 7.2 Hz, 2H), 7.48-7.51 (m, 3H), 7.39-7.45 (m, 1H), 6.96-6.99 (m, 4H), 4.15 (m, 2H), 2.18 (s, 3H), 1.28 (m, 3H).

III. ¹H NMR, ¹³C NMR and ³¹P NMR spectra copes of new compounds (3-Methylphenyl)diphenyl phosphine oxide (3c)

Bis(4-methylphenyl)phenyl phosphine oxide (3k)

Bis(3, 5-bismethylphenyl)phenylphosphine oxide (3n)

IV. Reference

(1). (a) Rudie, A. W.; Lichtenberg, D. W.; Katcher, M. L.; Davison A. *Inorg. Chem.* 1978, *17*, 2859. (b) Van Hecke, G. R.; Horrocks, W. D. *Inorg. Chem.* 1966, *5*, 1968. (c) Saito, T.; Munakata, H.; Imoto, H. *Inorg. Synth.* 1977, *17*, 84. (d) Arduengo III, A. J.; Krafczyk, R.; Schmutzler R. *Tetrahedron* 1999, *55*, 14523.

(2) Wilson, D. A.; Wilson, C. J.; Moldoveanu, C.; Resmerita, A.-M.; Corcoran, P.; Hoang, L. M.; Rosen, B. M.; Percec, V. J. Am. Chem. Soc. **2010**, *132*, 1800.

(3) Ogata, T.; Hartwig J. F. J. Am. Chem. Soc. 2008, 130, 42, 1384.

(4) Cerfontain, H.; Ansink, H. R. W.; Coenjaarts, N. J.; Degraaf, E. J.; Koebergtelder, A. Recueil *Des Travaux Chimiques Des Pays-Bas-Journal of the Royal Netherlands Chemical Society* **1989**, *108*, 445.

(5) Busacca, C. A.; Lorenz, J. C.; Grinberg, N.; Haddad, N.; Hrapchak, M.; Latli, B.; Lee, H.; Sabila, P.; Saha, A.; Sarvestani, M.; Shen, S.; Varsolona, R.; Wei, X.; Senanayake C. H. *Org. Lett.* **2005**, *7*, 4277.

(6) McDougal, N. T.; Streuff, J.; Mukherjee, H.; Virgil, S. C.; Stoltz, B. M. *Tetrahedron Lett.* **2010**, *51*, 5550.

(7) Takeda Chemical Industries, Ltd. 2004, EP1452537 A1.

(8) (a) Ai, H.; Fu, H.; Zhao Y. Chem. Commun. 2003, 2724. (b) Emmick, T. L.; Letsinger R. L. J. Am. Chem. Soc. 1968, 90, 3459.

(9) (a) Hauser, C. R.; Breslow, D. S. *Org. Synth.* **1941**, *21*, 51. (b) Awl, R. A.; Pryde, E. H. *J. Am. Oil. Chem. Soc.* **1966**, *43*, 35. (c) Bandgar, B. P.; Chavare S. N.; Pandit, S. S. *J. Chin. Chem. Soc.*, **2005**, *52*, 125.

(10) Zhang, X.; Liu, H.; Hu, X.; Tang, G.; Zhu, J.; Zhao, Y. Org. Lett. 2011, 13, 3478.

(11) (a) Tanner, D.; Wyatt, P.; Johansson, F.; Bertilsson, S. K.; Andersson, P. G. Acta Chemica

Scandinavica 1999, 53, 263. (b) Zhao, N.; Neckers, D. C. J. Org. Chem. 2000, 65, 2145.

(12) Xu, L.; Mo, J.; Baillie, C.; Xiao, J. J. Organomet. Chem. 2003, 687, 301.

(13) Jutand, A.; Mosleh, A.J. Org. Chem. 1997, 62, 261.

(14) Bonaterra, M.; Rossi, R. A.; Martín S. E. Organometallics 2009, 28, 933.

(15) Xu, W.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2010, 51, 2639.

(16) Furukawa, N.; Ogawa, S.; Matsumura, K.; Fujihara H. J. Org. Chem. 1991, 56, 6341.

(17) Whitaker, C. M.; Kott, K. L.; McMahon R. J. J. Org. Chem. 1995, 60, 3499.

(18) Yang, G.; Shen. C.; Zhang. W. Tetrahedron Lett. 2011, 52, 5032.

(19) Huang, C.; Tang, X.; Fu, H.; Jiang, Y.; Zhao, Y. J. Org. Chem. 2006, 71, 5020.