Supporting Information

Hg(OTf)₂-Catalyzed Direct Vinylation of Tryptamines and Versatile Applications for Tandem Reactions

Haruki Mizoguchi, Hideaki Oikawa and Hiroki Oguri*

General: NMR spectra were recorded on JEOL JNM-ECX 400 (¹H/400 MHz, ¹³C/100 MHz) spectrometers. Chemical Shifts are reported in δ (ppm) using chloroform, acetonitrile and dimethyl sulfoxide as an internal standard of δ 7.26, 1.94, 2.50 and 77.16, 118.26, 39.52 for ¹H and ¹³C-NMR, respectively. The medium pressure liquid chromatography (MPLC) purifications were performed on a YAMAZEN YFLC-AI-580. Analytical ultra performance liquid chromatography (UPLC) was carried out on WATERS ACQUITYTM UPLC[®] H-Class system with ACQUITY UPLC[®] BEH C18 1.7 µm 2.1×50 mm column and PDA detector (210-400 nm). Sample was dissolved in MeCN and UPLC fractionation conditions consisted of a linear gradient from 50% H₂O/50% MeCN to 5% H₂O/95% MeCN in 3 min at a flow rate of 0.5 mL/min, held at MeCN 100% for 0.50 min at a flow rate of 0.5 mL/min, then a convex gradient back to 80% H₂O/20% MeCN in 0.5 min at a flow rate of 0.5 mL/min, then held at 80% H₂O/20% MeCN for 0.5 min at a flow rate of 0.5 mL/min. Total run time for each injection was 4.5 min. Compound was detected by 252 nm UV absorption and characterized by photo diode array. Analytical high performance liquid chromatography (HPLC) was carried out on GILSON 321pump equipped with a GILSON UV/VIS-151 detector, GILSON FC203B fraction collector and Inertsil[®] SIL-100A 10×250 mm column. Where necessary, solvents were distilled from appropriate drying agents prior to use. Flash column chromatography was performed using Kanto Silica Gel 60N.

Figure S1-S33: ¹H and ¹³C-NMR Spectra of new compounds Figure S34-48: UPLC chromatographs and UV absorptions of new compounds Figure S49: ¹H spectrum of the deuterated 3a Figure S50: HPLC analysis of MTPA derivative of compound 6 Figure S51: A NOESY spectrum of compound 8

Figure S1. A ¹H-NMR spectrum of 3a in CDCl₃

Figure S2. A ¹³C-NMR spectrum of **3a** in CDCl₃

Figure S3. A ¹H-NMR spectrum of 3b in CDCl₃

Figure S4. A ¹³C-NMR spectrum of 3b in CDCl₃

Figure S5. A 1 H-NMR spectrum of 3c in CDCl₃

Figure S6. A ¹³C-NMR spectrum of 3c in CDCl₃

Figure S7. A ¹H-NMR spectrum of **3d** in $CDCl_3$

Figure S8. A ¹³C-NMR spectrum of 3d in CDCl₃

Figure S9. A ¹H-NMR spectrum of 3e in (CD₃)₂SO

Figure S10. A ¹³C-NMR spectrum of 3e in (CD₃)₂SO

Figure S11. A ¹H-NMR spectrum of 3f in CDCl₃

Figure S12. A ¹³C-NMR spectrum of 3f in CDCl₃

Figure S13. A ¹H-NMR spectrum of 3g in CDCl₃

Figure S14. A ¹³C-NMR spectrum of 3g in CDCl₃

Figure S15. A ¹H-NMR spectrum of 6 in CDCl₃

Figure S16. A ¹³C-NMR spectrum of 6 in CDCl₃

Figure S17. A ¹H-NMR spectrum of 8 in CDCl₃

Figure S18. A ¹³C-NMR spectrum of 8 in CDCl₃

Figure S19. A ¹H-NMR spectrum of 10 in CDCl₃

Figure S20. A ¹³C-NMR spectrum of 10 in CDCl₃

Figure S21. A ¹H-NMR spectrum of 12 in CDCl₃

Figure S22. A ¹³C-NMR spectrum of 12 in CDCl₃

Figure S23. A ¹H-NMR spectrum of 3i in CDCl₃

Figure S24. A ¹³C-NMR spectrum of 3i in CDCl₃

Figure S25. A ¹H-NMR spectrum of 13 in CDCl₃

Figure S26. A ¹³C-NMR spectrum of 13 in CDCl₃

Figure S27. A ¹H-NMR spectrum of 14 in CD₃CN

Figure S28. A ¹³C-NMR spectrum of 14 in CD₃CN

Figure S29. A ¹H-NMR spectrum of 16 in CDCl₃

Figure S30. A ¹³C-NMR spectrum of 16 in CDCl₃

Figure S31. A ¹H-NMR spectrum of 17 in CD₃CN

Figure S32. A ¹H-NMR spectrum of 17 in CD₃CN

Figure S33. UPLC chromatograph and UV spectra of 3a

Figure S34. UPLC chromatograph and UV spectra of 3b

Figure S35. UPLC chromatograph and UV spectra of 3c

Figure S36. UPLC chromatograph and UV spectra of 3d

Figure S37. UPLC chromatograph and UV spectra of 3e

Figure S38. UPLC chromatograph and UV spectra of 3f

Figure S39. UPLC chromatograph and UV spectra of 3g

Figure S40. UPLC chromatograph and UV spectra of 6

Figure S41. UPLC chromatograph and UV spectra of 8

Figure S42. UPLC chromatograph and UV spectra of 10

Figure S43. UPLC chromatograph and UV spectra of 12

Figure S44. UPLC chromatograph and UV spectra of 3i

Figure S45. UPLC chromatograph and UV spectra of 13

Figure S46. UPLC chromatograph and UV spectra of 14

Figure S47. UPLC chromatograph and UV spectra of 16

Figure S48. UPLC chromatograph and UV spectra of 17

Figure S49. A ¹H-NMR spectrum of the deuterated 3a in CDCl₃

Conversion of 6-(S) into MTPA derivative 19-(S, R) for HPLC analysis

To a solution of vinylated L-tryptophan derivative (*S*)-6 (20.6 mg, 0.0408 mmol) in acetonitrile (0.5 ml) was added Cs₂CO₃ (20.0 mg, 0.0612 mmol) and benzenethiol (1.6 µl, 0.0448 mmol) at 0 °C. After stirring at room temperature for 3 h, the mixture was added H₂O and extracted with dichloromethane, dried over Na₂SO₄, and concentrated. The crude mixture was then dissolved in dichloromethane (1.0 ml) and treated with triethylamine (8.6 µl, 0.0617 mmol) and (+)- α -Methoxy- α -(trifluoromethyl)phenylacetyl chloride (8.4 µl, 0.0449 mmol) at 0 °C. After stirred at 0 °C for 75 min, the mixture was added saturated NaHCO₃ (aq.) and extracted with EtOAc. The organic extracts were washed with saturated NaHCO₃ (aq.) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by silica-gel column chromatography to afford **19-**(*S*, *R*) 15.4 mg (0.0355 mmol, 87%).

According to the same procedure, 1:1 diastereomeric mixture of 19-(S, R) and 19-(R, R) was synthesized using D/L-tryptophan as starting material.

As shown in Figure S50, the extent of preservation of original chirality of L-tryptophane was estimated as >98% by the HPLC (Inertsil[®] SIL-100A 10×250 mm, Hexane-AcOEt 80:20 to 55:45, gradient time 15 min, flow rate 3 mL/min)

19-(*S*, *R*) derived from L-tryptophan

Diastereomeric mixture of 19-(R, R): 19-(S, R) = 1: 1 derived from D/L-tryptophan

Figure S50. HPLC chromatograms for the (+)-MTPA derivatives of vinylated tryptophan

Figure S51. A NOESY spectrum of 8 in CDCl₃