Electrical Supplementary Information (ESI)

First example of a heterobimetallic ‘Pd–Sn’ catalyst for direct activation of alcohol: Efficient allylation, benzylolation and propargylation of arenes, heteroarenes, active methylenes and allyl-Si nucleophiles

Debjit Das,† Sanjay Pratihar,†,‡ Ujjal Kanti Roy,†,δ Dipakranjan Mal,*† and Sujit Roy*,†,‡

†Organometallics & Catalysis Laboratory, Chemistry Department, Indian Institute of Technology, Kharagpur 721302, India;
δDeshabandhu Mahavidyalaya, Chittaranjan 713331, India

and

‡Organometallics & Catalysis Laboratory, School of Basic Sciences, Indian Institute of Technology, Bhubaneswar 751031, India

sujitroy.chem@gmail.com
Table of Contents:

S-1. 1H NMR and 13C NMR Study for substrate catalyst interaction

S-2. Formation of reduced product (E)-1,3-di(p-tolyl)prop-2-en (5)

S-3. Spectra of the complexes and alkylated products
S-1. Study for substrate catalyst interaction

(a) Experimental procedure to study and observation for the interaction of alpha-allyl benzyl alcohol with [Pd-Sn] by 1H NMR

To see the initial activation the spectrum of alpha-allyl benzyl alcohol 2b (1.4 mg, 0.01 mmol) was recorded in C$_6$D$_6$ solvent at room temperature in the absence as well as in the presence of catalyst 1a (4.75 mg, 0.01 mmol). In the absence of catalyst 1a the alcohol 2b shows an unresolved broad singlet at 4.86 ppm for allylic proton and a singlet at 1.21 ppm for -OH proton. Upon addition of the catalyst 1a, the initial broad singlet of the allylic -CH proton of 2b was converted to a well resolved doublet ($J=$5.6 Hz) at 5.45 ppm, while the peak for -OH proton almost vanishes.
(b) Procedure for the In situ 13C NMR study

13C NMR of cinnamyl alcohol/benzyl alcohol was recorded at room temperature in the absence as well as in the presence of 1 eqv. of catalyst 1a with respect to alcohol in CDCl$_3$.

![NMR spectra](image1)

S-2. Reaction of Vinylsilane: Formation of reduced product (E)-1,3-di(p-tolyl)prop-2-en (5)

A mixture of allyl alcohol 2f (1 mmol), vinyltrimethylsilane (2 mmol), and [Pd(COD)Cl(SnCl$_3$)] (2 mol %) in 2 mL of nitromethane was stirred at 85 °C for 1 hr. After that the reaction mixture was concentrated and purified by column chromatography to give 40% yield of 5.

![Reaction schematic](image2)
S-3. Spectra of complexes and alkylated products

1H and 13C spectra of catalyst 1a
DEPT spectra of catalyst 1a
1H and 13C spectra of catalyst 1b
31P spectra of catalyst 1b

31P NMR

Pd($\text{PPh}_3)_2\text{ClSnCl}_3$
1H and 13C spectra of compound 4b'}
DEPT spectra of compound 4b′
^1H and ^{13}C spectra of compound 4f and 4f'

![NMR Spectra](image-url)
1H and 13C spectra of compound 4h and 4h'
DEPT spectra of compound 4h and 4h'
1H and 13C spectra of compound 4j
1H and 13C spectra of compound 4k
DEPT spectra of compound 4k
1H and 13C spectra of compound 4l
DEPT spectra of compound 4l
1H and 13C spectra of compound 4o
1H and 13C spectra of compound 4t
1H and 13C spectra of compound 4v
DEPT of compound 4v
^{1}H and ^{13}C spectra of compound 4z