Supporting information

Highly selective colorimetric sensing of cyanide based on formation of dipyrrin adducts

Yubin Ding, Tong Li, Weihong Zhu,* and Yongshu Xie*

Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai, P. R. China.; E-mail: yshxie@ecust.edu.cn; Fax: (+86) 21-6425-2758. Tel: (+86) 21-6425-0772.

Contents:

Fig. S1. The 1H NMR spectrum of 1 in CDCl$_3$.

Fig. S2. The 13C NMR spectrum of 1 in CDCl$_3$.

Fig. S3. HRMS of 1 in MeOH.

Fig. S4. A photograph showing the colour change of 2 (20 µM) upon addition of 800 µM of various anions: a) in CH$_2$Cl$_2$; b) in DMSO/H$_2$O, 4/1, v/v.

Fig. S5. A photograph showing the colour change of 3 (20 µM) upon addition of 800 µM of various anions: a) in CH$_2$Cl$_2$; b) in DMSO/H$_2$O, 4/1, v/v.

Fig. S6 HRMS of cyanide adduct of 3 in MeOH.

Fig. S7. A plot of $(A-A_{\text{min}})/(A_{\text{max}}-A_{\text{min}})$ vs Log([CN$^-$]), the calculated detection limit of sensor 2 is 4.2×10$^{-6}$ M according to the literature method1. A is the absorbance at 521 nm. The linear regression affords an R value of 0.999.

Fig. S8. A plot of $(A-A_{\text{min}})/(A_{\text{max}}-A_{\text{min}})$ vs Log([CN$^-$]), the calculated detection limit of sensor 3 is 7.1×10$^{-6}$ M according to the literature method1. A is the absorbance at 502 nm. The linear regression affords an R value of 0.994.

Fig. S9. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of 0-400 µM F$^-$ (TBA salt) in CH$_2$Cl$_2$.

Fig. S10. UV-Vis spectral changes of 3 (12 µM) observed upon the addition of 0-340 µM F$^-$ (TBA salt) in CH$_2$Cl$_2$.

Fig. S11. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of various anions (TBA salts, 38 µM for CN$^-$, 100 µM for F$^-$, 2000 µM for Cl$^-$, Br$^-$, I$^-$, AcO$^-$, H$_2$PO$_4^-$) in CH$_2$Cl$_2$.

Fig. S12. UV-Vis spectral changes of 3 (12 µM) observed upon the addition of various anions (TBA salts, 46 µM for CN$^-$, 120 µM for F$^-$, 2400 µM for Cl$^-$, Br$^-$, I$^-$, AcO$^-$, H$_2$PO$_4^-$) in CH$_2$Cl$_2$.

Fig. S13. Plots of 1H NMR spectra of 2 (20 mM) on addition of CN$^-$ in CDCl$_3$.

Fig. S14. Plots of 1H NMR spectra of 3 (20 mM) on addition of CN$^-$ in CDCl$_3$.

Fig. S15. Changes in the UV-Vis absorption spectrum of 2 (20 µM) in the presence of the TBA salts of various anions (400 µM for CN$^-$, 4000 µM for F$^-$, Cl$^-$, Br$^-$, I$^-$, AcO$^-$, H$_2$PO$_4^-$) in DMSO/H$_2$O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 µM of indicated anions, followed by 400 µM of CN$^-$ anions.

Fig. S16. Changes in the UV-Vis absorption spectrum of 3 (20 µM) in the presence of the TBA salts of various anions (400 µM for CN$^-$, 4000 µM for F$^-$, Cl$^-$, Br$^-$, I$^-$, AcO$^-$, H$_2$PO$_4^-$) in DMSO/H$_2$O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 µM of indicated anions, followed by 400 µM of CN$^-$ anions.
Tables and figures

Fig. S1. The 1H NMR spectrum of I in CDCl$_3$.

Fig. S2. The 13C NMR spectrum of I in CDCl$_3$.

Fig. S3. HRMS of I in MeOH.
Fig. S4. A photograph showing the colour change of 2 (20 µM) upon addition of 800 µM of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S5. A photograph showing the colour change of 3 (20 µM) upon addition of 800 µM of various anions: a) in CH₂Cl₂; b) in DMSO/H₂O, 4/1, v/v.

Fig. S6. HRMS of cyanide adduct of 3 in MeOH.
Fig. S7. A plot of \((A-A_{\text{min}})/(A_{\text{max}}-A_{\text{min}})\) vs \(\log([\text{CN}^-])\), the calculated detection limit of sensor 2 is \(4.2 \times 10^{-6}\) M according to the literature method\(^1\). \(A\) is the absorbance at 521 nm. The linear regression affords an R value of 0.999.

Fig. S8. A plot of \((A-A_{\text{min}})/(A_{\text{max}}-A_{\text{min}})\) vs \(\log([\text{CN}^-])\), the calculated detection limit of sensor 3 is \(7.1 \times 10^{-6}\) M according to the literature method\(^1\). \(A\) is the absorbance at 502 nm. The linear regression affords an R value of 0.994.
Fig. S9. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of 0-400 µM F⁻ (TBA salt) in CH₂Cl₂.

Fig. S10. UV-Vis spectral changes of 3 (12 µM) observed upon the addition of 0-340 µM F⁻ (TBA salt) in CH₂Cl₂.

Fig. S11. UV-Vis spectral changes of 2 (10 µM) observed upon the addition of various anions (TBA salts, 38 µM for CN⁻, 100 µM for F⁻, 2000 µM for Cl-, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in CH₂Cl₂.
Fig. S12. UV-Vis spectral changes of 3 (12 µM) observed upon the addition of various anions (TBA salts, 46 µM for CN\(^{-}\), 120 µM for F\(^{-}\), 2400 µM for Cl\(^{-}\), Br\(^{-}\), I\(^{-}\), AcO\(^{-}\), H\(_2\)PO\(_4\)\(^{-}\)) in CH\(_2\)Cl\(_2\).

Fig. S13. Plots of \(^1\)H NMR spectra of 2 (20 mM) on addition of CN\(^{-}\) in CDCl\(_3\).

Fig. S14. Plots of \(^1\)H NMR spectra of 3 (20 mM) on addition of CN\(^{-}\) in CDCl\(_3\).
Fig. S15. Changes in the UV-Vis absorption spectrum of 2 (20 μM) in the presence of the TBA salts of various anions (400 μM for CN⁻, 4000 μM for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μM of indicated anions, followed by 400 μM of CN⁻ anions.

Fig. S16. Changes in the UV-Vis absorption spectrum of 3 (20 μM) in the presence of the TBA salts of various anions (400 μM for CN⁻, 4000 μM for F⁻, Cl⁻, Br⁻, I⁻, AcO⁻, H₂PO₄⁻) in DMSO/H₂O, 4/1, v/v: (a) in the presence of various anions. (b) White bars represent the addition of various anions. Black bars represent the addition of 4000 μM of indicated anions, followed by 400 μM of CN⁻ anions.

References: