A Receptor Incorporating OH, NH and CH Binding Motifs: Dual-Modal Sensing Fluoride

Liang Xu, Yongjun Li, Yanwen Yu, Taifeng Liu, Songhua Cheng, Huibiao Liu, Yuliang Li

Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China,
Graduate University of Chinese Academy of Sciences, Beijing 100080, P.R. China

E-mail: liyj@iccas.ac.cn, ylli@iccas.ac.cn
Table of contents

S1. Materials

S2. Instruments

S3. Synthesis of Compound 7

S4. \(^1\)H NMR and \(^{13}\)C NMR of compounds 1, 2, 3, 4, 5 and 6.

S5. Emission spectra of compound 1 (1 × 10^-5 M) upon addition of 60 equivalents of various anions.

S1. Materials

All reagents were obtained from commercial suppliers and used as received unless otherwise noted.

S2. Instruments

Column chromatography was performed on silica gel (160 - 200 mesh), and thin-layer chromatography (TLC) was performed on precoated silica gel plates and observed under UV light. Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Avance DPS-400 and Bruker Avance DPS-600 spectrometers at room temperature (298 K). Chemical shifts were referenced to the residual solvent peaks. Electrospray ionization (EI) mass spectrometry was performed on a Waters QP-2010 gas chromatography mass spectrometer. UV/Vis spectra were measured on a Hitachi U-3010 spectrometer. Fluorescence excitation and emission spectra were recorded using a Hitachi F-4500.

S3. Synthesis of Compound 7

Compound 7 ((5-Bromo-3-hydroxymethyl-2-methoxy-phenyl)-methanol) was synthesized in
accordance with literature procedures.23

S4. ¹H NMR and ¹³C NMR of compound 1, 2, 3, 4, 5, and 6.

¹H NMR spectrum (400 MHz, 298 K, CDCl₃) of compound 6

![NMR spectrum of compound 6](image)

¹³C NMR (CDCl₃, 298 K, 100 MHz) of compound 6
1H NMR spectrum (400 MHz, 298 K, CDCl₃) of compound 5

13C NMR (CDCl₃, 298 K, 100 MHz) of compound 5
1H NMR spectrum (400 MHz, 298 K, CDCl$_3$) of compound 4
13C NMR (CDCl$_3$, 298 K, 100 MHz) of compound 4
1H NMR spectrum (400 MHz, 298 K, CDCl$_3$) of compound 3
13C NMR (CDCl$_3$, 298 K, 100 MHz) of compound 3
1H NMR spectrum (400 MHz, 298 K, CDCl$_3$) of compound 2
13C NMR (CDCl$_3$, 298 K, 100 MHz) of compound 2

100 MHz, CDCl$_3$, 298 K
13C NMR (CDCl$_3$, 298 K, 100 MHz) of compound I

400 MHz, CDCl$_3$, 298 K
13C NMR (CDCl$_3$, 298 K, 100 MHz) of compound 1

S5. Emission spectra of compound 1 (1 × 10$^{-5}$ M) upon addition of 60 equivalents of various anions.

Fig S5 Emission spectra of compound 1 (1 × 10$^{-5}$ M) upon addition of 60 equivalents of tetrabutylammonium fluoride, chloride, bromide, iodide, hexafluorophosphate, acetate, dihydrogen phosphate, and sulfate in CH$_2$Cl$_2$. Excitation wavelength was 320 nm with 10.0 nm slit widths.