Electronic Supplementary Information for

Copper(II)-mediated oxidative cyclization of enamides to oxazoles

Alison E. Wendlandt and Shannon S. Stahl*

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706 stahl@chem.wisc.edu

1.	General Considerations	S2
2.	Procedure for Reaction Screening	S2
3.	Additional Optimization Data	S 3
4.	Synthesis and Characterization of Enamide substrates	S 4
5.	Kinetic Isotope Effect Determination	S 6
6.	¹ H and ¹³ C NMR Spectra of Substrates	S 7
7.	¹ H and ¹³ C NMR Spectra of Oxazoles	S22
8.	References	S35

1. General Considerations

All commercially available compounds were purchased from Sigma-Aldrich, and used as received unless otherwise indicated. Solvents were dried over alumina columns prior to use; anhydrous 1,4-dioxane was used as received. ¹H and ¹³C NMR spectra were recorded on Bruker AC-300 MHz or Varian Mercury-300 MHz spectrometers. Chemical shift values are given in parts per million relative to residual solvent peaks or TMS internal standard. Exact mass measurements were obtained by the mass spectrometry facility at the University of Wisconsin. Melting points were taken on a Mel-Temp II melting point apparatus. Gas Chromatography was done on a Shimadzu GC-17A using Shimadzu RTX-5MS (15m) column and referenced to an internal standard (trimethoxybenzene). Flash chromatography was performed using SilicaFlash® P60 (Silicycle, particle size 40-63 µm, 230-400 mesh) from Sigma Aldrich.

2. Procedure for Reaction Screening

Reaction screening was carried out as follows. Under ambient air, a 1.5dr vial containing a flea stirbar was loaded with 10mg (0.045mmol) of N-[(E)-2-phenylethenyl]benzamide, 1, followed by the addition of 12.1mg (0.09mmol) of anhydrous CuCl₂. Anhydrous 1,4dioxane was added (0.5mL), followed by 7.2uL of *N*-methylimidazole. The vial was sealed firmly with a Teflon cap, and a dark blue coloration was observed. (If N₂ or O₂ atmosphere was desired the vial was equipped at this point with a septum, and flushed for 5-7minutes with dry O_2 or N_2 before being sealed with a Teflon cap. The vial(s) were then clamped in an oil bath already stabilized at 140 °C, and heated with gentle stirring for 20 h (although timecourse studies indicate that reaction is 90% complete after around 6hrs). Within 5 minutes of heating, the reaction had turned from dark blue to green. By the end of the reaction vials contained a clear to pale vellow solution with a black residue at the bottom. Vials were removed from heat and allowed to cool. Samples were diluted with 3mL EtOAc, and 1mL of internal standard stock solution (1,3,5-trimethoxybenzene in EtOAc) was added. Approximately 0.5 to 1.0 mL of saturated Na₂S solution was then added and the vial was shaken vigorously to precipitate out CuS salts. An aliquot of the organic phase was then filtered through celite and analyzed by Gas Chromatography. Yields were determined by comparison with internal standard, with retention factor corrections previously ascertained though calibration curves.

3. Additional screening Table, S1

Table S1. Additional Screening Data^a

Entry	Cu Source	Solvent	Additive	Temp	% yield ^b
1.	15% Cu(OAc)₂	DMSO	5ea AcOH	100C	<1 %
2.	20% Cu(OTf) ₂	o-xvlene		140C	<1 %
3.	20% Cu(OTf) ₂	toluene		140C	<1 %
4.	20% Cu(OAc) ₂	toluene		140C	1.7%
5.	20% Cu(OAc) ₂	toluene	2.0 eq pyridine	140C	<1 %
6.	20% Cu(OAc) ₂	toluene	2.0 eq NaOAc	140C	<1 %
7.	20% Cu(OAc) ₂	toluene	5.0 eq AcOH	140C	<1 %
8.	200% Cu(OAc) ₂	toluene		140C	5.8 %
9.	200% CuCl ₂	toluene		140C	7.9 %
10.	200% CuCl ₂	toluene	3.0 eq NaHCO ₃	140C	7.9%
11.	200% CuCl ₂	toluene	3.0 eq Na ₂ CO ₃	140C	4.1%
12.	200% CuCl ₂	toluene	3.0 eq K ₂ CO ₃	140C	5.1%
13.	200% CuCl₂	toluene	3.0 eq Cs ₂ CO ₃	140C	2.5%
14.	200% CuCl ₂	toluene	3.0 eq NaOAc	140C	9.4%
15.	200% CuCl ₂	toluene	0.8 eq pyridine	140C	14.4%
16.	200% CuCl ₂	toluene	0.8 eq imidazole	140C	19.2%
17.	200% CuCl ₂	toluene	0.8 eq DBU ^c	140C	17.8%
18.	200% CuCl ₂	toluene	0.8 eq DABCO ^a	140C	2.3%
19.	200% CuCl ₂	toluene	0.8 eq pyrrolidine	140C	18.6%
20.	200% CuCl ₂	toluene	0.8 eq bipy	140C	3.5%
21.	200% CuCl ₂	toluene	0.8 eq phen	140C	1.9%
22.	200% CuCl ₂	toluene	0.4 eq bipy	140C	3.9%
23.	200% CuCl ₂	toluene	0.4 eq phen	140C	5.0%
24.	200% CuCl ₂	toluene	0.3 eq DMAP	140C	16.3%
25.	200% CuCl ₂	toluene	0.5 eq DMAP	140C	19.1%
26.	200% CuCl ₂	toluene	0.8 eq DMAP	140C	15.4%
27.	200% CuCl ₂	toluene	1.0 eq DMAP	140C	13.9%
28.	200% CuCl ₂	toluene	2.0 eq DMAP	140C	6.4%
29.	200% CuCl ₂	1,4-dioxane	0.5 eq DMAP	140C	23.7%
30.	200% CuCl ₂	1,4-dioxane	0.5 eq imidazole	140C	31%
31.	200% CuCl ₂	1,4-dioxane	2 eq imidazole	140C	57.4%
32.	100% CuCl ₂	1,4-dioxane	2 eq imidazole	140C	1.7%
33.	100% CuCl ₂	1,4-dioxane	1 eq imidazole	140C	53.8%
34.	50% CuCl ₂	1,4-dioxane	2 eq imidazole	140C	2.3%
35.	50% CuCl ₂	1,4-dioxane	0.5 eq imidazole	140C	39.4%

^a Reaction Conditions: reactions were run on 0.05mmol scale, at 0.1M in a sealed vessel at 140 C under air unless otherwise specified. ^b GC Yield. ^c 1,8-Diazabicyclo[5.4.0]undec-7-ene. ^d DABCO.

4. Substrate Synthesis

All enamides substrates were prepared using the procedure developed by Gooßen et al¹. Characterization data for substrates not reported therein are included below. Though not noted in their initial report, we found that trace carboxylic acid impurities in the amide substrates poisoned the catalyst; an additional base wash (10 % Na₂CO₃) was utilized on commercial amides containing these impurities. Ru(mta)₂cod is commercially available, but was prepared from RuCl₃ according to the procedure of Genet et al.² An alternative, metal-free preparation of N-[(*E*)-2-phenylethenyl]benzamide, **1**, was adapted from Katritzky and coworkers.³

4-methoxy-N-[(*E*)-2-(4-methoxyphenyl)ethenyl]benzamide Isolated as a cream-colored solid, mp = 200-203 °C. ¹H NMR (300MHz, DMSO-d⁶): δ 10.37 (d, NH, 9.9Hz), 7.95 (d, 2H, J = 8.7Hz), 7.49 (dd, 1H, J = 14.4, 9.6 Hz), 7.30 (d, 2H, J = 8.7Hz), 7.05 (d, 2H, J = 8.7Hz), 6.88 (d, 2H, J = 8.8Hz), 6.37 (d, 1H, J = 14.7Hz), 3.83 (s, 3H), 3.74 (s, 3H); ¹³C NMR (300MHz, DMSO-d⁶): δ 163.93, 162.73, 158.58, 130.18, 129.87, 127.01, 126.25, 123.22, 114.91, 114.37, 112.81, 56.11, 55.75; EMM (ESI) *m/z* calcd for C₁₇H₁₇NO₃ [M+H]⁺: 284.1282, meas: 284.1288.

N-[(E)-2-(4-methoxyphenyl)ethenyl]-4-nitrobenzamide

Isolated as a yellow solid, decomposition to red oil at 217 °C. ¹H NMR (300MHz, DMSO-d⁶): δ 10.83 (d, NH, 9.3Hz), 8.37 (dt, 2H, J=6.9, 2.1Hz), 8.20(dt, 2H, J = 9.0, 2.1Hz), 7.50 (dd, 1H, 14.4, 9.3 Hz), 7.36 (d, 2H, J = 6.6Hz), 6.90 (d, 2H, J = 6.9Hz), 6.47 (d, 1H, J = 14.7 Hz); ¹³C NMR (300MHz, DMSO-d⁶): δ 162.81, 158.89, 149.93, 139.74, 129.74, 129.35, 127.34, 124.31, 122.60, 114.94, 114.77, 55.77; EMM (ESI) *m/z* calcd for C₁₆H₁₄N₂O₄ [M]⁺: 298.0949, meas: 298.0953.

N-[(Z)-2-(3,4-dimethoxyphenyl)ethenyl]benzamide

Isolated as a white solid, mp 132-133 °C. ¹H NMR (300MHz, DMSO-d⁶): δ 9.94 (d, NH, J = 9.3Hz), 7.95 (m, 2H), 7.58 (t, 1H, J = 7.2Hz), 7.50 (t, 2H, J = 7.5Hz), 7.09 (d, 1H, J = 1.5Hz), 7.03 (dd, 1H, J = 8.4, 1.5Hz), 6.97 (d, 1H, J = 8.4Hz), 6.85 (t, 1H, J = 9.6Hz), 5.81 (d, 1H, J = 9.9Hz), 3.79 (s, 3H), 3.77 (s, 3H); ¹³C NMR (300MHz, DMSO-d⁶): δ 165.81, 149.24, 148.38, 134.19, 132.44, 129.21, 129.04, 128.43, 122.05, 121.72, 113.72, 112.76, 112.62, 56.22, 55.99; EMM (ESI): *m/z* calcd for C₁₇H₁₇NO₃ [M]⁺: 283.1203, meas 283.1212.

N-[(Z)-2-(4-chlorophenyl)ethenyl]benzamide Isolated as a white solid, Mp = 131-133°C; ¹H NMR (300MHz, DMSO-d⁶): δ 10.05 (d, NH, J = 9.3Hz), 7.91 (d, 2H, J = 6.9Hz), 7.38-7.59 (m, 6H), 6.94 (t, 1H, J = 9.6Hz), 5.75 (d, 1H, J = 9.6Hz); ¹³C NMR (300MHz, DMSO-d⁶): δ 166.15, 135.42, 134.06, 132.55, 131.48, 130.85, 129.12, 129.02, 128.61, 124.29, 112.06; EMM (ESI) m/z calcd for

C₁₅H₁₂ClNO[M+Na]:280.0500, meas: 280.0504.

N-[(E)-2-(4-methylphenyl)ethenyl]benzamide

Isolated as a white solid, Mp = 178-179 °C. ¹H NMR (300MHz, DMSO-d⁶): δ 10.55 (d, NH, J = 9.9Hz), 7.94 (d, 2H, J = 6.9Hz), 7.47-7.61 (m, 4H), 7.27 (d, 2H, J = 8.1Hz), 7.10 (d, 2H, J = 7.8Hz), 6.42 (d, 1H, J = 15 Hz), 2.25 (s, 3H); ¹³C NMR (300MHz, DMSO-d⁶): δ 164.63, 136.14, 134.38, 134.09, 132.51, 130.00, 129.14, 128.26, 125.86, 123.99, 113.64, 21.40. EMM (ESI) m/z calcd for C₁₆H₁₅NO [M+Na]⁺:260.1046, meas: 260.1053.

N-[(*E*)-2-(4-tert-butylphenyl)ethenyl]benzamide

Isolated as a white solid, Mp = 196-199°C. ¹H NMR (300MHz, DMSO-d⁶): δ 10.56 (d, NH, J = 9.9Hz), 7.95 (d, 2H, J = 6.6Hz), 7.47-7.63 (m, 4H), 7.30 (virtual s, 4H), 6.42 (d, 1H, J = 14.4Hz), 1.25, (s, 9H); ¹³C NMR (300MHz, DMSO-d⁶): δ 164.64, 149.43, 134.38, 134.08, 132.52, 129.15, 128.26, 126.16, 125.67, 124.12, 113.49, 34.87, 31.77. EMM (ESI) m/z calcd for C₁₉H₂₁NO [M+H]⁺:280.1696, meas: 280.1697.

N-[(*Z*)-2-cyclohexylethenyl]benzamide

Isolated as an oil which solidified over time, mp: 90-93 °C.¹H NMR (300MHz, CDCl₃): δ 7.79 (d, 2H, J = 6.9Hz), 7.67 (br d, 1H, J = 9.3Hz), 7.41-7.59 (m, 3H), 6.79 (t, 1H, J = 10.2 Hz), 4.75 (t, 1H, J = 9.3Hz), 2.20 (m, 1H), 1.69 (m, 5H), 1.14-1.34 (m, 5H); ¹³C NMR (300MHz, CDCl₃): δ 164.58, 134.31, 132.08, 128.96, 127.25, 119.63, 118.52, 35.80, 33.26, 26.10, 26.01. EMM(ESI) *m/z* calcd for C₁₅H₁₉NO [M+Na]⁺: 252.1359, Meas (M+Na): 252.1353.

5. Kinetic Isotope Effect Determination

 \mathbf{Y}^{Ph}

N-[2'-Deutero-(Z)-2-phenylethenyl]benzamide, $1-d_1$ Deuterated enamide substrate $1-d_1$ was prepared from benzamide- $N-d_2$ according to the method of Goossen,⁴ with slight modifications to the standard protocol. A Schlenk flask was washed three times with D_2O (2-3 mL) acidified with a few drops of aqueous DCl (35 wt %), flame dried under vacuum, and transferred into an inert-atmosphere glovebox. The solid reaction components, benzamide- d_2 (0.49 g, 4.0 mmol), 1,4bis(dicyclohexylphosphino)butane (0.108 g, 0.32 mmol), Ru(mta)₂(COD) (0.064 g, 0.20 mmol), and ytterbium triflate (0.099 g, 0.16 mmol) were then added to the flask, followed by the addition of dry, degassed DMF (12 mL). After the sealed flask was removed from the glovebox, phenylacetylene (0.88 mL, 8.0 mmol) and degassed D₂O (0.43 mL, 24 mmol) were added to the reaction flask. The reaction was subsequently carried out according to the literature procedures. Several flash column purifications were required to obtain pure product (column conditions: gradient 1:20-to-1:5 EtOAc:Hexanes, using a NEt₃-washed silica column). The title compound was obtained with 93% deuterium incorporation, based on ¹H NMR spectroscopic analysis (220 mg, 25% yield). ¹H NMR (300 MHz, CDCl₃): δ 8.36 (br s, 1H), 7.74 (d, 2H, J = 6.9 Hz), 7.1-7.5 (m, 9H); ¹³C NMR (300 MHz. CDCl₃): δ 164.58, 135.95, 133.62, 132.38, 129.48, 129.07, 128.08, 127.30, 122.55, 110.83 (t, J = 24.9Hz); EMM (ESI) m/z calcd for $C_{15}H_{12}DNO [M+H]$: 225.1133, meas: 225.1138.

The kinetic isotope effect was determined by independent rate measurements of (*Z*)-1 and (*Z*)-1- d_1 . A comparison of the initial linear region of the reaction timecourse (t=0 to t=10 min) results in a measured $k_{\rm H}/k_{\rm D}$ of 1.0 ± 0.2 .

6. ¹H and ¹³C NMR Spectra of Substrates

PPM

0

7. ¹H and ¹³CNMR Spectra of Products

0.001

S34

8. References

1. L. J. Goossen,; K. S. M. Salih, M. Blanchot, "Synthesis of Secondary Enamides by Ruthenium-Catalyzed Selective Addition of Amides to Terminal Alkynes." *Angew. Chem. Int. Ed.* **2008**, *47*, 8492-8495.

2. J. P. Genêt, C. Pinel, V. Ratovelomanana-Vidal, S. Mallart, X. Pfister, M. C. C. De Andrade, J. A. Laffitte, "Novel, general synthesis of the chiral catalysts diphosphine-ruthenium (II) diallyl complexes and a new practical in situ preparation of chiral ruthenium (II) catalysts." *Tetrahedron: Asymmetry* **1994**, *5*, 665-674.

3. A. R. Katritzky, A. V. Ignatchenko, H. Lang, "A Novel Route to N-Styrylamides." *Synthetic Commun.* **1995**, *25*, 1197-1204.

4. M. Arndt, K. S. M. Salih, A. Fromm, L.J. Goossen, F. Menges, G. Niedner-Schatteburg, "Mechanistic Investigation of the Ru-Catalyzed Hydroamidation of Terminal alkynes" *J. Am. Chem. Soc.* **2011**, *133*, 7428-7449.