Supramolecular polymerization of oligopyrenotides - stereochemical control by single, natural nucleotides

Alina L. Nussbaumer, Florent Samain, Vladimir L. Malinovskii and Robert Häner*

*Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
Table of Contents:

General procedures

Figure 14. Temperature variable absorbance spectra of oligomer 2, 3, 4 and co-aggregates 1*2, 1*3, 1*4.

Figure 15. Temperature variable absorbance spectra of oligomer 5, 6, 7 and co-aggregates 1*5, 1*6, 1*7.

Figure 16. Temperature variable absorbance spectra of oligomer 8, 9, 10 and co-aggregates 1*8, 1*9, 1*10.

Figure 17. Temperature variable absorbance spectra of oligomer 11, 12, 13 and co-aggregates 1*11, 1*12, 1*13.

Figure 18. Temperature variable fluorescence spectra of oligomer 2, 3, 4 and co-aggregates 1*2, 1*3, 1*4.

Figure 19. Temperature variable fluorescence spectra of oligomer 5, 6, 7 and co-aggregates 1*5, 1*6, 1*7.

Figure 20. Temperature variable fluorescence spectra of oligomer 8, 9, 10 and co-aggregates 1*8, 1*9, 1*10.

Figure 21. Temperature variable fluorescence spectra of oligomer 11, 12, 13 and co-aggregates 1*11, 1*12, 1*13.

Figure 22. Temperature variable absorption spectra and fluorescence spectra of oligomer 2, 3, 4 and its complementary base.

Figure 23. Temperature variable absorption spectra and fluorescence spectra of oligomer 8, 9, 10 and its complementary base.

Figure 24. Normalized absorbance and fluorescence spectra of oligomers 2*6, 3*5, 4*7.

Figure 25. CD-spectra of 2*6, 3*5, 4*7.

Figure 26. Normalized absorbance and fluorescence spectra of oligomers 8*12, 9*11, 10*13.

Figure 27. CD-spectra of pyrene oligomer 8*12, 9*11, 10*13.

Figure 28. Cooling profile of the co-aggregates 2*6, 3*5, 4*7, 8*12, 10*13.
General procedures

The required pyrene building block\(^1\) and the oligomers were synthesized and purified according to a published procedures.\(^2\)

Spectroscopic methods

Unless otherwise indicated, all experiments were performed in sodium phosphate buffer (10 mM, 1M NaCl, pH 7.0) for 5 µM oligomer concentration, \(\varepsilon_{350} = 20'000 \text{ dm}^3\text{mole}^{-1}\text{cm}^{-1}\) was used for pyrene units.

Temperature dependent UV/VIS spectra were collected with an optic path of 1 cm over the range of 200-500 nm at 10-90 °C with a 10 °C interval on *Varian Cary-100 Bio-UV/VIS* spectrophotometer equipped with a *Varian Cary*-block temperature controller. The cell compartment was flushed with N\(_2\).

Thermal melting experiments were carried out on *Varian Cary-100 Bio-UV/VIS* spectrophotometer equipped with a *Varian Cary*-block temperature controller and data were collected with Varian WinUV software at 354 nm (cooling-ramp in the temperature range of 10-90°C, temperature gradient of 0.5°C/min). Data are normalized at maximum of absorbance (at high temperature).

Temperature dependent fluorescence data were collected on a *Varian Cary Eclipse* fluorescence spectrophotometer equipped with a *Varian Cary*-block temperature controller (excitation at 350 nm; excitation and emission slit width of 2.5 nm) using 1 cm x 1 cm quartz cuvettes. *Varian Eclipse* software was used to investigate the fluorescence of the oligopyrenes at a wavelength range of 370-700 nm in the temperature range of 10-90 °C.

CD spectra were recorded on a *JASCO J-715* spectrophotometer using quartz cuvettes with an optical path of 1 cm. (Scanning speed: 100 nm/min; data pitch: 0.5 nm; band width: 1.0 nm; response: 1 sec).

The calculation of the g-factor was done with the equation \(G = \frac{CD(\text{mdeg})}{32980 \times \text{Abs}} \) using the absorbance and CD values in mdeg recorded by the JASCO-J-715.

Amplification experiment using 10% chiral information. Oligomer 1 (5 \(\mu \text{M} \) building block concentration) was mixed together with phosphate buffer and sodium chloride and heated to 90°C (10 mM, 1M NaCl, pH 7.0). After cooling and equilibration of 1 week, 10% (0.5 \(\mu \text{M} \) building block concentration) of the corresponding oligomers of 3, 5, 7 and 11 were added to the preformed supramolecular polymers. From then on data points were taken after 2 hours, 1 day, 4 days and then every week until one month was passed.

Mass spectrometry of oligomers was performed with a Sciex QSTAR pulsar (hybrid quadrupole time-of-flight mass spectrometer, Applied Biosystems). ESI-TOF MS (negative mode, CH\(_3\)CN/H\(_2\)O/TEA) data of compounds are presented in Table 1. LC-MS was performed with a Shimadzu LCMS-2010EV high-performance liquid chromatograph/ mass spectrometer.

Table 1. Mass spectrometry data of synthesized oligomers (ESI-TOF MS, negative mode, CH\(_3\)CN/H\(_2\)O/TEA).

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Molecular Formula</th>
<th>Calc. average mass</th>
<th>Found mass</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 SSS SSS S</td>
<td>C({168})H({156})N({14})O({40})P(_{6})</td>
<td>3203.0</td>
<td>3203.0</td>
</tr>
<tr>
<td>2 (5') SS SSS SSC</td>
<td>C({177})H({160})N({17})O({46})P(_{7})</td>
<td>3492.0</td>
<td>3492.0</td>
</tr>
<tr>
<td>3 (5') CSS SSS SS</td>
<td>C({177})H({160})N({17})O({46})P(_{7})</td>
<td>3492.0</td>
<td>3490.5</td>
</tr>
<tr>
<td>4 (5') CSS SSS SSC</td>
<td>C({186})H({178})N({20})O({52})P(_{8})</td>
<td>3781.4</td>
<td>3782.0</td>
</tr>
<tr>
<td>5 (5') SS SSS SSG</td>
<td>C({178})H({168})N({19})O({46})P(_{7})</td>
<td>3532.2</td>
<td>3531.0</td>
</tr>
<tr>
<td>6 (5') GSS SSS SS</td>
<td>C({178})H({168})N({19})O({46})P(_{7})</td>
<td>3532.2</td>
<td>3531.0</td>
</tr>
<tr>
<td>7 (5') GSS SSS SSG</td>
<td>C({188})H({178})N({24})O({52})P(_{8})</td>
<td>3861.4</td>
<td>3863.0</td>
</tr>
<tr>
<td>8 (5') SS SSS SST</td>
<td>C({178})H({168})N({16})O({42})P(_{7})</td>
<td>3507.2</td>
<td>3507.0</td>
</tr>
<tr>
<td>9 (5') TSS SSS SS</td>
<td>C({178})H({168})N({16})O({42})P(_{7})</td>
<td>3507.2</td>
<td>3505.5</td>
</tr>
<tr>
<td>10 (5') TSS SSS SST</td>
<td>C({188})H({180})N({19})O({48})P(_{8})</td>
<td>3811.4</td>
<td>3811.0</td>
</tr>
<tr>
<td>11 (5') SS SSS SSA</td>
<td>C({178})H({168})N({19})O({46})P(_{7})</td>
<td>3516.2</td>
<td>3516.0</td>
</tr>
<tr>
<td>12 (5') ASS SSS SS</td>
<td>C({178})H({168})N({19})O({46})P(_{7})</td>
<td>3516.2</td>
<td>3515.5</td>
</tr>
<tr>
<td>13 (5') ASS SSS SSA</td>
<td>C({188})H({178})N({24})O({50})P(_{8})</td>
<td>3829.4</td>
<td>3830.0</td>
</tr>
</tbody>
</table>
Figure 1. MS and LC-MS data of oligomer Py₇ (1); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 230 nm and 254 nm.
Figure 2. MS and LC-MS data of oligomer Py7-C (2); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 230 nm,
Figure 3. MS and LC-MS data of oligomer C-Py₇ (3); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 4. MS and LC-MS data of oligomer C-Py₇-C (4); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 230 nm, 254 nm, 284 nm and 350 nm.
Figure 5. MS and LC-MS data of oligomer Py7-G (5); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 230 nm, 254 nm and 350 nm.
Figure 6. MS and LC-MS data of oligomer G-Py7 (6); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm,
Figure 7. MS and LC-MS data of oligomer G-Py7-G (7): MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 8. MS and LC-MS data of oligomer Py7-T (8); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 9. MS and LC-MS data of oligomer T-Py₇ (9); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 10. MS and LC-MS data of oligomer T-Py-T (10); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 11. MS and LC-MS data of oligomer Py7-A (11): MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 12. MS and LC-MS data of oligomer A-Py₇ (12); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 13. MS and LC-MS data of oligomer A-Py7-A (13); MS-spectra (top) total ion chromatogram (middle) and chromatogram using detection wavelength at 254 nm and 350 nm.
Figure 14. Temperature variable absorbance spectra of oligomers 2, 3, 4 (left) and co-aggregates 1*2, 1*3, 1*4 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH = 7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 15. Temperature variable absorbance spectra of oligomers 5, 6, 7 (left) and co-aggregates 1*5, 1*6, 1*7 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH = 7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 16. Temperature variable absorbance spectra of oligomer 8, 9, 10 (left) co-aggregates 1*8, 1*9, 1*10 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 17. Temperature variable absorbance spectra of oligomers 11, 12, 13 (left) and co-aggregates 1*11, 1*12, 1*13 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 18. Temperature variable fluorescence spectra of oligomer 2, 3, 4 (left) and co-aggregates 1*2, 1*3, 1*4 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 19. Temperature variable fluorescence spectra of oligomer 5, 6, 7 (left) and co-aggregates 1*5, 1*6, 1*7 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH = 7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 20. Temperature variable fluorescence spectra of oligomer 8, 9, 10 (left) and co-aggregates 1*8, 1*9, 1*10 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH = 7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 21. Temperature variable fluorescence spectra of oligomer 11, 12, 13 (left) and co-aggregates 1*11, 1*12, 1*13 in a 1:1 ratio (right). Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
The effect of nucleobase complementarity

Figure 22. Temperature variable absorption spectra (left) and fluorescence spectra (right) of oligomer 2, 3, 4 and its complementary base. Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 23. Temperature variable absorption spectra (left) and fluorescence spectra (right) of oligomer 8, 9, 10 and its complementary base. Conditions: sodium phosphate buffer, pH =7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.
Figure 24. Normalized absorbance (left) and fluorescence (right) spectra of 2*6 (Py7-C)* (G-Py7), 3*5 (C-Py7)* (Py7-G), 4*7 (C-Py7-C)* (G-Py7-G). Conditions: sodium phosphate buffer, pH = 7.0, 1 M NaCl. Total concentration of pyrenyl containing blocks: 5 µM.

Figure 25. CD-spectra of 2*6 (Py7-C)* (G-Py7), 3*5 (C-Py7)* (Py7-G), 4*7 (C-Py7-C)* (G-Py7-G). Conditions: see Fig. 11.
Figure 26. Normalized absorbance (left) and fluorescence spectra (right) of 8*12 (Py7-T)* (A-Py7), 9*11 (T-Py7)* (Py7-A), 10*13 (T-Py7-T)* (A-Py7-A). Conditions: see Fig. 11.

Figure 27. CD-spectra of pyrene oligomer 8*12 (Py7-T)* (A-Py7), 9*11 (T-Py7)* (Py7-A), 10*13 (T-Py7-T)* (A-Py7-A). Conditions: see Fig. 11.
Figure 28. Melting profile of the co-aggregates 2^*6, 3^*5, 4^*7, 8^*12, 10^*13 in a 1:1 ratio. Conditions: see Fig. 11.