Supporting information for:

Nickel-Catalyzed C-H Direct Amination of Benzoxazoles with Secondary Amines

Yaming Li*, Jin Liu, Yusheng Xie, Rong Zhang, Kun Jin, Xiuna Wang, and Chunying Duan*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
ymli@dlut.edu.cn

CONTENTS:
I General Methods..2
II Optimization study ...2
III Experimental procedure ..4
IV Copies of products’ and prepared materials’ ¹H NMR and ¹³C NMR spectra8
I General Methods

The reactions were carried out under air and the products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate. All compounds were characterized by 1H NMR, 13C NMR and Mass spectroscopy and melting point. 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) spectra were determined on INOVA 400. GC-MS data were performed on HP 6890GC/5973 MSD. High resolution mass spectrometry data were performed on Q-Tof MS. Melting point was detected on a X-4 microscopic instrument.

Materials Amines, acid, oxidant, benzoxazole were purchased and used without further purification. Substituted benzoxazoles were synthesized according to reported methods as following procedure.

In a 100 mL flask, a mixture of 2-aminophenol derivative (5 mmol) and triethyl orthoformate (15 mL) was refluxed for 4-7 h. After cooling to room temperature, remaining triethyl orthoformate was removed under reduced pressure and the residue was purified by column chromatography on silica gel with petroleum ether and ethyl acetate to afford the desired products.

5-methylbenzoxazole

light yellow solid; 62% isolated yield; 1H NMR (400 MHz, CDCl3) δ (ppm): 2.48 (s, 3H), 7.19 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.58 (s, 1H), 8.05 (s, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm): 21.6, 110.4, 120.6, 126.9, 134.6, 140.4, 148.4, 152.8; GC-MS (EI): m/z = 133 [M]+.

5-tert-butylbenzoxazole

yellow liquid; 94% isolated yield; 1H NMR (400 MHz, CDCl3) δ (ppm): 1.39 (s, 9H), 7.45 (d, J = 8.4 Hz, 1H, J = 1.2 Hz, 1H), 7.50 (d, J = 8.4 Hz, 1H), 7.81 (d, J = 1.2 Hz, 1H), 8.07 (s, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm): 31.9, 35.1, 110.2, 117.1, 123.6, 140.1, 148.1, 148.3, 152.8; GC-MS (EI): m/z = 175 [M]+.

5-chlorobenzoxazole

light yellow solid; 53% isolated yield; 1H NMR (400 MHz, CDCl3) δ (ppm): 7.38 (dd, J = 8.8 Hz, 1.6 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 1.6 Hz, 1H), 8.12 (s, 1H); 13C NMR (100 MHz, CDCl3) δ (ppm): 111.9, 120.7, 126.3, 130.4, 141.3, 148.8, 153.9; GC-MS (EI): m/z = 153 [M]+.

II Optimization study

A dried Schlenk test tube containing a magnetic stirring bar was charged with benzoxazole (0.5 mmol), amine (0.6 mmol), nickel catalyst , acid additive, oxidant, CH3CN (2 mL). And the tube was sealed and the mixture was treated at 70 °C for 12 h. The resulting mixture was allowed
to room temperature and washed with a saturated solution of NaHCO$_3$, extracted with ethyl acetate. The organic layers were detected by GC analysis.

Table S1 Variation of oxidantsa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Oxidant (equiv)</th>
<th>Acid (equiv)</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>AcOH (1.2)</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>TBHP (1.2)</td>
<td>AcOH (1.2)</td>
<td>82</td>
</tr>
<tr>
<td>3</td>
<td>TBHP (1.2)</td>
<td>AcOH (1.2)</td>
<td>82c</td>
</tr>
<tr>
<td>4</td>
<td>MCPBA (1.2)</td>
<td>AcOH (1.2)</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>DTBP (1.2)</td>
<td>AcOH (1.2)</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>K$_2$S$_2$O$_8$ (1.2)</td>
<td>AcOH (1.2)</td>
<td>80</td>
</tr>
</tbody>
</table>

a Reaction condition: 1a (0.5 mmol), 2a (0.6 mmol), Ni(CO$_3$)$_2$·4H$_2$O (20 mol%), acid, CH$_2$CN (2 ml) under oxygen atmosphere, 70°C, 12 h. bGC yield. cunder air atmosphere.

Table S2 Variation of additivesa

<table>
<thead>
<tr>
<th>Entry</th>
<th>Additive</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AcOH</td>
<td>82</td>
</tr>
<tr>
<td>2</td>
<td>AlCl$_3$</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>ZnCl$_2$</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>C$_2$H$_5$COOH</td>
<td>89</td>
</tr>
<tr>
<td>5</td>
<td>L-Proline</td>
<td>7</td>
</tr>
<tr>
<td>6</td>
<td>p-anisic acid</td>
<td>83</td>
</tr>
</tbody>
</table>

a Reaction condition: 1a (0.5 mmol), 2a (0.6 mmol), Ni(CO$_3$)$_2$·4H$_2$O (20 mol%) additive (1.2 equiv), CH$_2$CN (2 ml), 70°C, 12 h, under oxygen atmosphere. bGC yield.

Table S3 Variation of nickel speciesa

3
Experimental procedure

A dried Schlenk test tube containing a magnetic stirring bar was charged under air with benzoxazole (0.5 mmol), amine (0.6 mmol), Ni(OAc)$_2$·4H$_2$O (5 mol%), C$_2$H$_5$CO$_2$H (1.2 or 5 equiv), TBHP (70% solution in water, 3 equiv), CH$_3$CN (2 mL). And the tube was sealed and the mixture was treated at 70 °C for 12 h. The resulting mixture was allowed to room temperature and washed with a saturated solution of NaHCO$_3$, extracted with ethyl acetate for three times. The combined organic layers were dried with Na$_2$SO$_4$ and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel with EtOAc / petroleum (1/1-1/30) to provide the desired product.

N, N-dibutylbenzoxazol-2-amine (3a)

Light yellow liquid; Yield 68%; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 0.96 (t, $J = 7.2$ Hz, 6H), 1.34-1.43 (m, 4H), 1.62-1.70 (m, 4H), 3.51 (m, 4H), 6.97 (m, 1H), 7.13 (t, $J = 8.0$ Hz, 1H), 7.23 (d, $J = 8.0$ Hz, 1H), 7.34 (d, $J = 8.0$ Hz, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 14.1, 20.2, 30.3, 48.5, 108.6, 115.9, 120.0, 123.9, 143.8.
N, N-dipropylbenzoxazol-2-amine (3b)11d

Light yellow liquid; Yield 73%; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 0.96 (t, $J = 7.2$ Hz, 6H), 1.66-1.76 (m, 4H), 3.48 (t, $J = 7.6$ Hz, 4H), 6.95-6.99 (m, 1H), 7.11-7.15 (m, 1H), 7.23 (d, $J = 8.0$ Hz, 1H), 7.35 (d, $J = 7.6$ Hz, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 11.3, 21.4, 50.5, 108.6, 115.9, 120.0, 123.9, 143.8, 148.9, 162.8; GC - MS (EI) $m/z = 218$ [M]$^+$

N, N-diethylbenzoxazol-2-amine (3c)$^{\text{11f}}$

Colorless liquid; Yield 66%; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 1.29 (t, $J = 7.2$ Hz, 6H), 3.57-3.62 (q, $J = 7.2$, 4H), 6.96-7.00 (m, 1H), 7.12-7.16 (m, 1H), 7.24 (d, $J = 8.0$ Hz, 1H), 7.36 (d, $J = 8.0$ Hz, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 13.6, 43.1, 108.7, 115.9, 120.1, 124.0, 143.5, 148.9, 162.2; GC - MS (EI) $m/z = 190$ [M]$^+$

N, N-dibutyl-5-methylbenzoxazol-2-amine (3d)

White solid; Yield 70%; M.p.: 58-60 °C; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 0.95 (t, $J = 7.2$ Hz, 6H), 1.33-1.42 (m, 4H), 1.61-1.69 (m, 4H), 2.38 (s, 3H), 3.49 (t, $J = 7.6$ Hz, 4H), 6.77 (d, $J = 8.0$ Hz, 1H), 7.09 (d, $J = 8.0$ Hz, 1H), 7.15 (s, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 14.1, 20.2, 21.7, 30.3, 48.4, 107.9, 116.4, 120.6, 133.5, 144.0, 147.0, 163.0; GC - MS (EI) $m/z = 260$ [M]$^+$

5-methyl-N, N-dipropylbenzoxazol-2-amine (3e)

White solid; Yield 78%; M.p.: 38-40 °C; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 0.96 (t, $J = 7.2$ Hz, 6H), 1.66-1.75 (m,4H), 2.38 (s,3H), 3.46 (t, $J = 7.2$ Hz, 4H), 6.77 (d, $J = 8.0$ Hz, 1H), 7.10 (d, $J = 8.0$ Hz, 1H), 7.15 (s,1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 11.3, 21.4, 50.5, 108.7, 115.9, 120.0, 123.9, 143.8, 148.9, 162.8; HRESI-MS (m/z): Calculated for C$_{14}$H$_{12}$N$_2$O [M + H]$^+$ 233.1654, found [M + H]$^+$: 233.1657.

N, N-diethyl-5-methylbenzoxazol-2-amine (3f)$^{\text{11f}}$

Colorless liquid; Yield 75%; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 1.27 (t, $J = 7.2$ Hz, 6H), 2.38 (s, 3H), 3.57 (q, $J = 7.2$ Hz, 4H), 6.78 (d, $J = 8.0$ Hz, 1H), 7.10 (d, $J = 8.0$ Hz, 1H), 7.15 (s, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 13.7, 21.7, 43.1, 108.0, 116.4, 120.7, 133.6, 143.9, 147.1, 162.5; GC - MS (EI) $m/z = 204$ [M]$^+$

5-methyl-2-(piperidin-1-yl)benzoxazole (3g)$^{\text{11a}}$
White solid; Yield 77%; M.p.: 97-98 °C; Prepared as shown in general experimental procedure.
1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 1.669 (s, 6H), 2.38 (s, 3H), 3.64 (s, 4H), 6.79 (d, $J = 8.0$ Hz, 1H), 7.09 (d, $J = 8.0$ Hz, 1H), 7.14 (s, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 21.7, 24.2, 25.4, 46.7, 108.0, 116.6, 121.1, 133.6, 143.6, 147.0, 162.8; GC - MS (EI) m/z = 216 [M]$^+$

5-methyl-2-(4-methylpiperidin-1-yl)benzoxazole (3h)

White solid; Yield 72%; M.p.: 63-65 °C; Prepared as shown in general experimental procedure.
1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 0.98 (d, $J = 6.4$ Hz, 3H), 1.22-1.32 (m, 2H), 1.61-1.64 (m, 1H), 1.74 (d, $J = 13.2$ Hz, 2H), 2.38 (s, 3H), 3.01-3.08 (m, 2H), 4.25 (d, $J = 12.8$ Hz, 2H), 6.79 (d, $J = 8.0$ Hz, 1H), 7.09 (d, $J = 8.0$ Hz, 1H), 7.14 (s, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 21.7, 22.0, 30.8, 33.6, 46.2, 108.0, 116.6, 121.1, 133.6, 143.6, 147.0, 162.8; HRESI-MS (m/z): Calculated for C$_{19}$H$_{19}$N$_2$O [M + H]$^+$ 231.1497, found [M + H]$^+$: 231.1496.

N-benzyl-N, 5-dimethylbenzoxazol-2-amine (3i)II

White solid; Yield 67%; M.p.: 50-51 °C; Prepared as shown in general experimental procedure.
1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 2.40 (s, 3H), 3.11 (s, 3H), 4.74 (s, 2H), 6.81 (d, $J = 8.0$ Hz, 1H), 7.13 (d, $J = 8.0$ Hz, 1H), 7.18 (s, 1H), 7.28-7.35 (m, 5H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 21.7, 35.3, 54.0, 108.3, 116.7, 121.2, 127.9, 127.9, 128.9, 133.8, 136.7, 143.8, 147.3, 163.3; GC - MS (EI) m/z = 252 [M]$^+$

N-(2-chlorobenzyl)-N, 5-dimethylbenzoxazol-2-amine (3j)

White solid; Yield 67%; M.p.: 69-70 °C; Prepared as shown in general experimental procedure.
1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 2.40 (s, 3H), 3.19 (s, 3H), 4.88 (s, 2H), 6.82 (d, $J = 8.0$ Hz, 1H), 7.12 (d, $J = 8.0$ Hz, 1H), 7.19 (s, 1H), 7.21-7.28 (m, 3H), 7.39-7.41 (m, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 21.7, 35.9, 51.5, 108.3, 116.8, 121.3, 127.3, 128.5, 129.0, 130.0, 133.6, 133.8, 134.2, 143.7, 147.4, 163.2; HRESI-MS (m/z): Calculated for C$_{16}$H$_{15}$N$_2$ONaCl [M + Na]$^+$ 309.0771, found [M + Na]$^+$: 309.0776.

N, N-diallyl-5-methylbenzoxazol-2-amine (3k)V

Yellow liquid; Yield 65%; Prepared as shown in general experimental procedure.
1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 2.39 (s, 3H), 4.14 (d, $J = 5.6$ Hz, 4H), 5.21-5.26 (m, 4H), 5.83-5.92 (m, 2H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 21.7, 50.0, 108.2, 116.7, 118.0, 121.2, 132.8, 133.7, 143.6, 147.2, 162.6; GC - MS (EI) m/z = 228 [M]$^+$

N, 5-dimethyl-N-phenylbenzoxazol-2-amine (3l)
Yellow crystal; Yield 35%; M.p.: 55-56 °C; Prepared as shown in general experimental procedure.

1H NMR (CDCl₃, 400 MHz) δ (ppm): 2.40 (s, 3H), 3.62 (s, 3H), 6.84 (d, $J = 8.0$ Hz, 1H), 7.10 (d, $J = 8.0$ Hz, 1H), 7.23-7.25 (m, 2H), 7.42 (s, 4H); 13C NMR (CDCl₃, 100 MHz) δ (ppm): 21.7, 39.2, 108.5, 117.2, 122.0, 124.6, 126.1, 129.4, 133.9, 143.1, 143.2, 147.1, 161.6; HRESI-MS (m/z): Calculated for C₁₃H₁₃N₂O [M + H]$^+$ 239.1184, found [M + H]$^+$: 239.1189

5-tert-butyl-N, N-dibutylbenzoxazol-2-amine (4a)11H

Light yellow liquid; Yield 64% (5 equiv acid), 69% (1.2 equiv acid); Prepared as shown in general experimental procedure.

1H NMR (CDCl₃, 400 MHz) δ (ppm): 0.95 (t, $J = 7.2$ Hz, 6H), 1.34-1.40 (m, 13H), 1.61-1.69 (m, 4H), 3.49 (t, $J = 7.6$ Hz, 4H), 7.01 (dd, $J = 8.4$ Hz, 1.6 Hz, 1H), 7.14 (d, $J = 8.4$ Hz, 1H), 7.43 (d, $J = 1.6$ Hz, 1H); 13C NMR (CDCl₃, 100 MHz) δ (ppm): 14.0, 20.1, 30.3, 32.0, 35.0, 48.5, 107.6, 113.1, 117.1, 143.6, 146.8, 147.3, 163.0; GC-MS (EI) m/z = 302 [M]$^+$

N, N-dibutyl-5-chlorobenzoxazol-2-amine (4b)11H

White solid; Yield 57% (5 equiv acid), 43% (1.2 equiv acid); M.p.: 60-61 °C; Prepared as shown in general experimental procedure.

1H NMR (CDCl₃, 400 MHz) δ (ppm): 0.96 (t, $J = 7.2$ Hz, 6H), 1.33-1.43 (m, 4H), 1.61-1.69 (m, 4H), 3.49 (t, $J = 7.6$ Hz, 4H), 6.92 (dd, $J = 8.4$ Hz, 2 Hz, 1H), 7.12 (d, $J = 8.4$ Hz, 1H), 7.29 (d, $J = 2$ Hz, 1H); 13C NMR (CDCl₃, 100 MHz) δ (ppm): 14.0, 20.1, 30.2, 48.6, 109.0, 116.0, 119.8, 129.2, 145.3, 147.5, 163.6; GC-MS (EI) m/z = 280 [M]$^+$

N, N-diallyl-5-chlorobenzoxazol-2-amine (4c)

Colorless liquid; Yield 31% (5 equiv acid), 26% (1.2 equiv acid); Prepared as shown in general experimental procedure.

1H NMR (CDCl₃, 400 MHz) δ (ppm): 4.15 (d, $J = 5.6$ Hz, 4H), 5.23-5.27 (m, 4H), 5.82-5.92 (m, 2H), 6.96 (dd, $J = 8.4$ Hz, 2 Hz, 1H), 7.14 (d, $J = 8.4$ Hz, 1H), 7.32 (d, $J = 2.0$ Hz, 1H); 13C NMR (CDCl₃, 100 MHz) δ (ppm): 50.2, 109.4, 116.4, 118.4, 120.4, 129.5, 132.4, 144.8, 147.7, 163.3; HRESI-MS (m/z): Calculated for C₁₃H₁₃N₂ONaCl [M + Na]$^+$ 271.0614, found [M + Na]$^+$: 271.0613.

N, N-diallyl-5-tert-butylbenzoxazol-2-amine (4d)

Colorless liquid; Yield 46% (5 equiv acid), 64% (1.2 equiv acid); Prepared as shown in general experimental procedure.

1H NMR (CDCl₃, 400 MHz) δ (ppm): 1.34 (s, 9H), 4.15 (d, $J = 5.6$ Hz,
5-tert-butyl-N-(2-chlorobenzyl)-N-methylbenzoxazol-2-amine (4e)

Yellow solid; Yield 37% (5 equiv acid), 54% (1.2 equiv acid); M.p.: 89-92 °C; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 1.35 (s, 1H), 3.20 (s, 3H), 4.88 (s, 2H), 7.07 (dd, $J = 8.4$ Hz, 2 Hz, 1H), 7.17 (d, $J = 8.4$ Hz, 1H), 7.21-7.26 (m, 3H), 7.39-7.41 (m, 1H), 7.46 (d, $J = 1.6$ Hz, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 32.0, 35.0, 50.1, 108.0, 113.5, 117.7, 118.0, 132.8, 143.3, 147.1, 147.5, 162.7; HRESI-MS (m/z): Calculated for C$_{17}$H$_{20}$N$_2$Na $[M + Na]^+$ 293.1630, found $[M + Na]^+$: 293.1634.

5-tert-butyl-2-(piperidin-1-yl)benzoxazole (4f)

White acicular crystal; Yield 60% (5 equiv acid), 70% (1.2 equiv acid); M.p.: 84-87 °C; Prepared as shown in general experimental procedure. 1H NMR (CDCl$_3$, 400 MHz) δ (ppm): 1.34 (s, 9H), 1.67 (s, 6H), 3.64 (s, 4H), 7.03 (dd, $J = 8.4$ Hz, 1.6Hz, 1H), 7.14 (d, $J = 8.4$ Hz, 1H), 7.42 (d, $J = 1.6$ Hz, 1H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 24.2, 25.4, 32.0, 35.0, 46.8, 107.7, 113.3, 117.5, 143.2, 146.8, 147.4, 162.8; HRESI-MS (m/z): Calculated for C$_{16}$H$_{23}$N$_2$O $[M + H]^+$ 259.1810, found $[M + H]^+$: 259.1815.

IV Copies of products’ and prepared materials’ 1H NMR and 13C NMR spectra

5-methylbenzoxazole
5-tert-butylbenzoxazole
$\text{H NMR (400 MHz, CDCl}_3$)

$\text{C NMR (100 MHz, CDCl}_3$)

5-chlorobenzoxazole
\textit{N, N-dibutylbenzoxazol-2-amine (3a)}
1H NMR (400 MHz, CDCl$_3$)

1C NMR (100 MHz, CDCl$_3$)

N, N-dipropylbenzoxazol-2-amine (3b)
$\text{H NMR (400 MHz, CDCl}_3\text{)}$

$\text{C NMR (100 MHz, CDCl}_3\text{)}$

N, N-diethylbenzoxazol-2-amine (3c)
^{1}H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

N,N-dibutyl-5-methylbenzoxazol-2-amine (3d)
5-methyl-N, N-dipropylbenzoxazol-2-amine (3e)
1H NMR (400 MHz, CDCl$_3$)

1C NMR (100 MHz, CDCl$_3$)

N, N-diethyl-5-methylbenzoxazol-2-amine (3f).
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

5-methyl-2-(piperidin-1-yl)benzoxazole (3g)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

5-methyl-2-(4-methylpiperidin-1-yl)benzoxazole (3h)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

N-benzyl-N, 5-dimethylbenzoxazol-2-amine (3i)
^{1}H NMR (400 MHz, CDCl$_3$)

^{13}C NMR (100 MHz, CDCl$_3$)

N-(2-chlorobenzyl)-N, 5-dimethylbenzoxazol-2-amine (3j)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
N, N-diallyl-5-methylbenzoxazol-2-amine (3k).
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)

N, 5-dimethyl-N-phenylbenzoxazol-2-amine (31)
5-tert-butyl-N, N-dibutylbenzoxazol-2-amine (4a)
N, N-dibutyl-5-chlorobenzoxazol-2-amine (4b)
$^{1} \text{H NMR (400 MHz, CDCl$_3$)}$

13C NMR (100 MHz, CDCl$_3$)

N, N-diallyl-5-chlorobenzoxazol-2-amine (4c)
N, N-diallyl-5-tert-butylbenzoxazol-2-amine (4d)
1H NMR (400 MHz, CDCl₃)

13C NMR (100 MHz, CDCl₃)

5-tert-butyl-N-(2-chlorobenzyl)-N-methylbenzoxazol-2-amine (4e)
5-tert-butyl-2-(piperidin-1-yl)benzoxazole (4f)
1H NMR (400 MHz, CDCl$_3$)

13C NMR (100 MHz, CDCl$_3$)