Electronic supplementary information

Carbonate, Acetate and Phenate Exchanged Phosphonium Salts as Catalysts in Transesterification Reactions for the Synthesis of Non Symmetric Dialkyl Carbonates

Maurizio Selva,* Marco Noè, Alvise Perosa, and Marina Gottardo
Dipartimento di Scienze Ambientali dell’Università Ca’ Foscari
Calle Larga S. Marta 2137 – 30123 – Venezia (Italy)
e-mail: selva@unive.it

Table of content

Synoptic table of major MS signals of reaction products. S2
NMR spectra of the prepared catalysts S3
ESI-MS spectra of the prepared catalysts S6
NMR spectra of the isolated products S8
IR spectra of the isolated products S16
References S18
Synoptic table of major MS signals of reaction products.

<table>
<thead>
<tr>
<th>Compound</th>
<th>GC/MS (EI, 70 eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cyclohexyl methyl carbonate</td>
<td>m/z: 99 (M-CH₂CO₂⁺, 32%), 83 (M-CH₂OCHO₂⁺, 52), 82 (M-CH₂OCHO₂-H⁺, 98), 81 (21), 77 (63), 71 (42), 67 (100), 59 (27), 55 (47), 54 (31).</td>
</tr>
<tr>
<td>Cyclohexyl ethyl carbonate</td>
<td>m/z: 99 (M-CH₂CH₃CO₂⁺, 57%), 91 (100), 83 (M-CH₂CH₂OCHO₂⁺, 63), 82 (M-CH₂CH₂OCHO₂-H⁺, 67), 81 (22), 67 (74), 63 (35), 57 (51), 55 (44).</td>
</tr>
<tr>
<td>Cyclopentyl methyl carbonate</td>
<td>m/z: 91 (25%), 85 (M-CH₃CO₂⁺, 80), 69 (M-CH₃CH₂OCHO₂⁺, 53), 68 (M-CH₃OCHO₂-H⁺, 28), 67 (22), 63 (12), 58 (11), 57 (100).</td>
</tr>
<tr>
<td>Cyclopentyl ethyl carbonate</td>
<td>m/z: 91 (25%), 85 (M-CH₃CH₂CO₂⁺, 80), 69 (M-CH₃CH₂OCHO₂⁺, 53), 68 (M-CH₃OCHO₂-H⁺, 28), 67 (22), 63 (12), 58 (11), 57 (100).</td>
</tr>
<tr>
<td>Benzyl methyl carbonate</td>
<td>m/z: 166 (M⁺, 67%), 122 (M-CO₂⁺, 14), 121 ([M-CO₂-H⁺, 20], 107 ([M-CO₂ CH₃⁺, 51] 91 ([C₂H₅⁺, 100], 90 (41), 79 (30), 77 (25), 65 (15).</td>
</tr>
<tr>
<td>Menthyl methyl carbonate</td>
<td>m/z: 139 (M-CH₃OCHO₂⁺, 12%), 138 ([M-CH₃OCHO₂-H⁺, 55), 123 ([M-CH₃OCHO₂-CH₃⁺, 54] 109 ([M-CH₃OCHO₂-CH₃⁺, 11], 95 ([C₂H₅⁺, 100], 82 (23), 81 (61), 69 (12), 67 (20), 65 (15), 57 (14).</td>
</tr>
<tr>
<td>Menthyl ethyl carbonate</td>
<td>m/z: 139 (M-CH₃OCHO₂⁺, 15%), 138 ([M-CH₃OCHO₂-H⁺, 65), 123 ([M-CH₃CH₂OCHO₂-CH₃⁺, 52] 109 ([M-CH₃CH₂OCHO₂-CH₃⁺, 11], 95 ([C₂H₅⁺, 100], 82 (24), 81 (60), 71 (13), 69 (15), 67 (18), 57 (10), 55 (21).</td>
</tr>
<tr>
<td>Triphenylmethyl methyl ether⁠ †</td>
<td>m/z: 274 ([M⁺, 62%], 243 ([Ph₃C⁺, 75], 197 ([M⁺, 100], 165 (37), 105 ([PhCO⁺, 30], 77 (17). Match quality: 94.9% (ref. NIST).</td>
</tr>
<tr>
<td>1,1 diphenylethene</td>
<td>m/z: 180 ([M⁺, 100%), 179 ([M-H⁺, 74], 178 ([M-2H⁺, 62), 165 (83), 152 (12), 89 (12).</td>
</tr>
</tbody>
</table>

1. Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
NMR spectra of prepared catalysts

Figure S1 1H-NMR of compound 1c in CDCl$_3$.

Figure S2 13C-NMR of compound 1c in CDCl$_3$.

Figure S3 31P-NMR of compound 1c in CDCl$_3$.

Figure S4 1H-NMR of compound 1d in DMSO-d_6.
Figure S5 13C-NMR of compound 1d in DMSO-d_6.

Figure S6 31P-NMR of compound 1d in DMSO-d_6.
Figure S7 ESI-MS of compound 1c in acetonitrile. The spectrum shows a strong positive ion at m/z 385 corresponding to the P₈₈₈₁ cation (the anion mass was too low to be detected by ESI-MS).
Figure S8 ESI-MS of compound 1d in acetonitrile. The spectrum shows a strong positive ion at m/z 385 corresponding to the P₈₈₈₁ cation (the anion mass was too low to be detected by ESI-MS).
NMR spectra of the isolated products

Figure S9 1H-NMR of cyclohexyl methyl carbonate in CDCl$_3$.

Figure S10 13C-NMR of cyclohexyl methyl carbonate in CDCl$_3$.
Figure S11 1H-NMR of cyclopentyl methyl carbonate in CDCl$_3$.

Figure S12 13C-NMR of cyclopentyl methyl carbonate in CDCl$_3$.
Figure S13 1H-NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl methyl carbonate (menthyl methyl carbonate) in CDCl$_3$.

Figure S14 13C-NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl methyl carbonate (menthyl methyl carbonate) in CDCl$_3$.
Figure S15 1H-NMR of benzyl methyl carbonate in CDCl$_3$.

Figure S16 13C-NMR of benzyl methyl carbonate in CDCl$_3$.
Figure S17 1H-NMR of 1,1-diphenylethene in CDCl$_3$.

Figure S18 13C-NMR of 1,1-diphenylethene in CDCl$_3$.
Figure S19 1H-NMR of cyclohexyl ethyl carbonate in CDCl$_3$.

Figure S20 13C-NMR of cyclohexyl ethyl carbonate in CDCl$_3$.
Figure S21 \(^1\text{H-NMR}\) of cyclopentyl ethyl carbonate in CDCl\(_3\).

Figure S22 \(^1\text{H-NMR}\) of cyclopentyl ethyl carbonate in CDCl\(_3\).
Figure S23 1H-NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl ethyl carbonate (menthyl ethyl carbonate) in CDCl$_3$.

Figure S24 1H-NMR of (1R,2S,5R)-2-isopropyl-5-methylcyclohexyl ethyl carbonate (menthyl ethyl carbonate) in CDCl$_3$.
IR spectra of new products

Figure S25 IR spectrum of cyclopentyl methyl carbonate.
Figure S26 IR spectrum of menthyl methyl carbonate.
References