2,4,6-Trichloro-1,3,5-triazine (TCT) mediated one-pot sequential functionalisation of glycosides for the generation of orthogonally protected monosaccharide building blocks

Madubabu Tatina^a, Syed Khalid Yousuf^a Debaraj Mukherjee^a*

*Corresponding Author. Tel.:+91-191-2569000; fax: +91-191-2569111; e-mail: dmukherjee@iiim.ac.in,

^aNPC-microbes, Indian Institute of Integrative Medicine, (IIIM)-Jammu-India.

Section A: General Information 2
Section B: Experimental Procedures and spectral analysis 2-11
Section C: Copies of ^1^H NMR and ^13^C NMR 12-31
General information: 1H and 13C NMR spectra were recorded on 200, 400 and 500 MHz spectrometers with TMS as the internal standard. Chemical shifts are expressed in parts per million (δ ppm). Silica gel coated aluminium plates were used for TLC. The products were purified by column chromatography on silica gel (60-120/100-200 mesh) using petroleum ether–ethyl acetate as the eluent to obtain the pure products. Elemental analyses were performed on Elementar. Reagents used were mostly purchased from Sigma Aldrich.

General procedure for 4,6-O-arylidation: To a mixture (suspension) of unprotected saccharide (1 mmol) and arylidene dimethyl acetal (1.2 mmol) in CH$_3$CN (5 mL) was added TCT (0.3 mmol). The reaction mixture was subjected to sonication at 60 °C for 10 minutes under a nitrogen atmosphere. The completion of the reaction was monitored through TLC. The solvent was evaporated and the residue was purified by flash chromatography to give the corresponding 4,6-O-arylidene product.

General procedure for one-pot 4,6-O-arylidation/acetylation reaction: To a mixture (suspension) of unprotected saccharide (1 mmol) and arylidene dimethyl acetal (1.2 mmol) in CH$_3$CN (5 mL) was added TCT (0.3 mmol). The reaction mixture was subjected to sonication at 60 °C for 10 minutes under a nitrogen atmosphere. Acetic anhydride (3 mmol) and additional 0.2 mmol of TCT was then added and the obtained solution was stirred for a further 8 hours at 90 °C under sonication. Acetonitrile was evaporate and DCM (30 mL) was added. The reaction mixture was filtered and the filtrate was concentrated to yield the crude product. The crude product was purified by column chromatography to give the corresponding protected monosaccharides.

General procedure for one-pot 4,6-O-arylidation/acetylation/reductive ring opening reaction: To a mixture (suspension) of unprotected saccharide (1 mmol) and arylidene dimethyl acetal (1.2 mmol) in CH$_3$CN (5 mL) was added TCT (0.3 mmol). The reaction mixture was subjected to sonication at 60 °C for 10 minutes under a nitrogen atmosphere. Acetic anhydride (3 mmol) and additional 0.2 mmol of TCT was then added and the obtained solution was stirred for a further 8 hours at 90 °C under sonication to get completely acetylated product followed by the addition of 8 equiv. of NaCNBH$_3$ and additional 6 mmol of TCT. The reaction mixture was allowed to stirred at 90 °C for further 6h. The completion of the reaction was monitored through TLC. The reaction mixture was passed through short celite pad and washed with 20 mL of DCM. The filtrate was evaporated to yield the crude
product which was subjected to column chromatography to yield the corresponding orthogonally protected monosaccharides.

Procedure for large scale benzylidene protection:
To a mixture (suspension) of unprotected saccharide (20 grams) and arylidene dimethyl acetal (1.2 mol) in CH$_3$CN (50 mL) was added TCT (10 mol%). The reaction mixture was subjected to sonication at 60 $^\circ$C for 0.5 h under a nitrogen atmosphere. The completion of the reaction was monitored through TLC. The solvent was evaporated and the residue was purified by flash chromatography to give the corresponding 4,6-O-arylidene product.

Spectral Analysis:

Methyl 4,6-O-benzylidene-α-D-glucopyranoside 1a. Prepared by general procedure 1 using methyl-α-D-glucopyranoside 1 (194 mg, 1 mmol) to give the corresponding product 1a in >99% yield. IR (CHCl$_3$) ν 3368, 2940, 1452, 1372, 1074, 1040, 999, 748, 696 cm$^{-1}$; 1H NMR (200MHz, MeOD), δ, 7.40-7.33 (m, 5H, Ar), 5.37 (s, 1H, PhCH), 4.65 (d, J = 3.3 Hz, 1H, H-1), 3.83-3.70 (m, 1H), 3.67-3.50 (m, 4H), 3.66-3.65 (m, 1H), 3.40 (bs, 3H, -OMe). 13C NMR (50MHz, MeOD), δ, 137.0, 129.2, 128.2 x 2, 126.3 x 2, 101.8, 99.8, 80.9, 72.7, 71.4, 68.8, 62.3, 55.4. ESI MS (m/z): 305 [M+Na]. Anal. Cal. for C$_{14}$H$_{18}$O$_6$: C, 59.57, H, 6.43; Found: C, 59.50, H, 6.52.

Methyl 4,6-O-p-methoxybenzylidene-α-D-glucopyranoside 1b. Prepared by general procedure 1 using methyl-α-D-glucopyranoside 1 (194 mg, 1 mmol) to give the corresponding product 1b in >99% yield. IR (CHCl$_3$) ν 3362, 2491, 1370, 1043, 997 cm$^{-1}$; 1H NMR (200MHz, MeOD), δ, 7.89 (d, J = 8.5 Hz, 1H, Ar), 7.35 (d, J = 8.5 Hz, 1H, Ar), 7.10 (d, J = 8.5 Hz, 1H, Ar), 6.92 (d, J = 8.5 Hz, 1H, Ar), 5.31 (s, PhCH), 4.68 (d, J = 3.4 Hz, 1H, H-1), 3.89-3.71 (m, 3H), 3.67-3.49 (m, 2H), 3.40 (bs, 3H, -OMe), 3.36-3.32 (m, 1H). 13C NMR (50MHz, MeOD), δ, 160.2, 129.6, 127.6 x 2, 113.7 x 2, 101.9, 99.8, 81.0, 72.7, 68.9, 62.4, 55.5, 55.3. ESI MS (m/z): 335 [M+Na]. Anal. Cal. for C$_{15}$H$_{20}$O$_7$: C, 57.69, H, 6.45; Found: C, 57.77, H, 6.53.
Prepared by general procedure 1 using thiophenyl-β-D-glucopyranoside 2 (356 mg, 1 mmol) to give the corresponding product 2a in 99% yield. The spectroscopic data was found in agreement with the reported one.

Prepared by general procedure 1 using methyl-α-D-glucopyranoside 3 (374 mg, 1 mmol) to give the corresponding product 3a in 93% yield. IR (CHCl₃) ν 3066, 2934, 2863, 1728, 1602, 1584, 1482, 1416, 1451, 1377, 1276, 1096, 996, 751, 710 cm⁻¹; 1H NMR (200 MHz, CDCl₃), δ 8.01-7.92 (m, 5H, Ar), 7.51-7.29 (m, 10H, Ar), 6.06 (t, J = 9.7 Hz, 1H), 5.57 (s, 1H, PhCH), 5.28 (d, J = 3.3 Hz, 1H, H-1), 5.21-5.17 (m, 2H), 4.39 (dd, J = 4.4, 10.0 Hz, 1H), 4.12-3.60 (m, 2H), 3.43 (bs, 3H, -OMe). 13C NMR (50MHz, MeOD), δ 166.6, 165.5, 136.9, 133.6, 133.3, 129.9, 129.8 x 2, 129.7, 129.6 x 2, 129.0 x 2, 128.4 x 2, 128.2 x 2, 128.1 x 2, 126.1, 101.6, 97.8, 79.4, 72.5, 69.5, 68.9, 62.5, 55.6. ESI MS (m/z): 335 [M+Na]. Anal. Cal for C₂₈H₂₆O₈: C, 68.56, H, 5.34; Found: C, 68.59, H, 5.39.

Prepared by general procedure 1 using methyl-α-D-glucopyranoside 4 (402 mg, 1 mmol) to give the corresponding product 4a in 98% yield. The spectroscopic data was found in agreement with the reported one.

Prepared by general procedure 1 using thiophenyl-β-D-glucopyranoside 5 (272 mg, 1 mmol) to give the corresponding product 5a in 95% yield. IR (CHCl₃) ν 3381, 2920, 1583, 1451, 1370, 1106, 1069, 985, 743, 697 cm⁻¹; 1H NMR (200MHz, MeOD), δ 7.57-7.30 (m, 5H, Ar), 5.56 (s, 1H, PhCH), 4.73 (d, J = 10 Hz, 1H, H-1), 4.26 (dd, J = 4.0, 10.0 Hz, 1H), 3.74-3.62
(m, 2H), 3.49-3.43 (m, 2H), 3.34-3.33 m, 1H). 13C NMR (50MHz, MeOD), δ, 136.8, 133.0 x 2, 131.2, 129.3, 129.1 x 2, 128.4, 128.3 x 2, 126.2 x 2, 101.9, 88.5, 80.5, 74.5, 72.5, 70.5, 68.5. ESI MS (m/z): 383 [M+Na]. Anal. Cal. for C$_{19}$H$_{20}$O$_{5}$S: C, 63.32, H, 5.59; Found: C, 63.39, H, 5.67.

Prepared by general procedure 1 using allyl-β-D-glucopyranoside 6 (220 mg, 1 mmol) to give the corresponding product 6a in 99% yield. IR (CHCl$_3$) v 3509, 2925, 2864, 1606, 1452, 1085, 928, 771, 748 cm$^{-1}$; 1H NMR (400MHz, MeOD), δ, 7.52-7.50 (m, 2H, Ar), 7.40-7.38 (m, 2H, Ar), 5.96-5.94 (m, 1H), 5.55 (bs, 1H), 5.38 (dd, J = 1.6, 17.2 Hz, 1H), 5.34 (dd, J = 1.2, 17.2 Hz, 1H), 4.48 (d, J = 7.6 Hz, 1H), 4.40-4.37 (m, 2H), 4.18 (dd, J = 6.0, 12.4 Hz, 1H), 3.86-3.60 (m, 3H). 13C NMR (50MHz, MeOD), δ, 136.9, 133.4, 129.3, 128.3 x 2, 126.2 x 2, 118.3, 102.1, 101.9, 80.5, 79.5, 74.5, 73.1, 70.6, 68.6, 66.3, 50.7. ESI MS (m/z): 331 [M+Na]. Anal. Cal. for C$_{16}$H$_{20}$O$_{5}$: C, 62.33, H, 6.54; Found: C, 62.39, H, 6.60.

Prepared by general procedure 1 using silylethanol-β-D-glucopyranoside 8 (280 mg, 1 mmol) to give the corresponding product 8a in 95% yield. 1H NMR (200MHz, MeOD), δ, 7.46-7.36 (m, 5H, Ar), 5.55 (s, 1H, PhCH), 4.39 (d, J = 7.6 Hz, 1H, H-1), 4.24-4.21 (m, 1H), 3.94-3.90 (m, 2H), 3.79-3.60 (m, 4H), 3.45-3.42 (m, 2H), 0.99-0.97 (m, 2H), 0.03, 0.01, 0.001 (s, 3 x Si(CH$_3$)$_3$). ESI MS (m/z): 274 [M+Na]. Anal. Cal. for C$_{13}$H$_{15}$O$_{5}$: C, 62.14, H, 6.02; Found: C, 62.19, H, 6.09.

Prepared by general procedure 1 using methyl-α-D-mannopyranoside 9 (194 mg, 1 mmol) to give the corresponding product 9a in 98% yield. IR (CHCl$_3$) v 3400, 3060, 2869, 1583, 1480, 1439, 1402, 1362, 1099, 1069, 1026, 997, 817, 735, 696 cm$^{-1}$; 1H NMR (200MHz, MeOD), δ,7.50-7.32 (m, 5H, Ar), 5.59 (s, 1H, PhCH), 4.66 (bs, 1H, H-1), 4.23 (dd, J = 4.0, 10.0 Hz, 1H), 3.89-3.74 (m, 5H), 3.38 (bs, 3H, -OMe). 13C NMR (50MHz, MeOD), δ, 137.8,

Prepared by general procedure 1 using thiophenyl-β-D-galactopyranoside 10 (272 mg, 1 mmol) to give the corresponding product 10a in 96% yield. IR (CHCl₃) ν 3368, 2872, 1583, 1480, 1362, 1069, 734, 695 cm⁻¹; ¹H NMR (200MHz, MeOD), δ, 7.65-7.26 (m, 10H, Ar), 5.58 (s, 1H, PhCH), 4.60 (d, J = 9.3 Hz, 1H, H-1), 4.18 (dd, J = 1.2, 6.9 Hz, 1H), 3.73-3.56 (m, 4H), 3.32-3.29 (m, 1H). ¹³C NMR (50MHz, MeOD), δ, 138.5, 133.8, 130.4 x 2, 128.6, 128.5 x 2, 127.7 x 2, 126.4, 126.2 x 2, 105.8, 88.0, 75.9, 73.0, 69.0, 68.5, 67.8. ESI MS (m/z): 383 [M+Na]. Anal. Cal. for C₁₉H₂₀O₅S: C, 63.32, H, 5.59; Found: C, 63.37, H, 5.70.

Prepared by general procedure 1 using 2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 11 (401 mg, 1 mmol) to give the corresponding product 11a in 70% yield. The spectroscopic data was found in agreement with the reported one.⁵¹

Prepared by general procedure 2 using methyl-α-D-glucopyranoside 1 (194 mg, 1 mmol) to give the corresponding product 12a in 95% yield. IR (CHCl₃) ν 2933, 1753, 1451, 1372, 1241, 1224, 1033, 974, 891cm⁻¹; ¹H NMR (CDCl₃, 200MHz), δ, 7.46-7.34 (m, 5H, Ar), 5.51 (bs, 1H), 5.59 (t, J = 9.2 Hz, 1H), 4.95 (d, J = 3.0 Hz, 1H), 4.90 (bd, J = 3.0Hz, 1H), 4.32 (dd, J = 4.4, 9.8 Hz, 1H), 4.00-3.60 (m, 3H), 4.42 (bs, 3H, -OMe), 2.10 (S, 3H, -OAc), 2.06 (s, 3H, -OAc). ¹³C NMR (50MHz, MeOD), δ, 166.6, 165.6, 136.9, 129.6, 129.0, 128.4, 128.2, 126.1,
Prepared by general procedure 2 using methyl-α-D-mannopyranoside 9 (194 mg, 1 mmol) to give the corresponding product 16b in 80% yield. IR (CHCl₃) ʋ 2937, 1751, 1615, 1589, 1432, 1371, 1056, 1034, 990, 831 cm⁻¹; ¹H NMR (200MHz, CDCl₃), δ, 7.39 (d, J = 8.0 Hz, 2H), 6.90 (d, J = 8.0 Hz, 2H), 5.62 (t, J = 9.4 Hz, 1H), 5.74 (s, 1H), 4.93 -4.87 (m, 2H), 4.30 (dd, J = 4.3, 10.0 Hz, 1H), 3.91 (dd, J = 4.3, 10.0 Hz, 1H), 3.80 (bs, 3H, -OMe, Ar), 3.70 (bs, 3H, -OMe), 2.10 (bs, 3H, -OAc), 2.05 (s, 3H, -OAc), ¹³C NMR (CDCl₃, 50MHz), δ, 170.4, 169.7, 160.1, 129.5, 127.5 x 4, 113.6, 101.5, 97.6, 79.2, 71.6, 69.0, 68.8, 62.4, 55.3, 55.2, 20.8, 20.7. ESI MS (m/z): 419 [M+Na]. Anal. Cal. for C₁₉H₂₄O₉: C, 57.57, H, 6.10; Found: C, 57.50, H, 6.18.

Prepared by general procedure 2 using allyl-α-D-glucopyranoside 6 (220 mg, 1 mmol) to give the corresponding product 13a in 95% yield. IR (CHCl₃) ʋ 2924, 1749, 1458, 1374, 1238, 1222, 1090, 1060, 992, 762, 695 cm⁻¹; ¹H NMR (CDCl₃, 200MHz), δ, 7.44-7.41 (m, 2H, Ar), 7.35-7.34 (m, 3H, Ar), 5.97-5.95 (m, 1H), 5.50 (bs, 1H), 5.34-5.29 (m, 2H), 5.03 (dd, J = 8, 11.8 Hz, 1H), 4.64 (d, J = 8.0 Hz, 1H), 4.38-4.31 (m, 2H), 4.11 (dd, J = 6.0, 13.2 Hz, 1H), 3.80 (t, J = 10.4 Hz, 1H), 3.70 (t, J = 9.6 Hz, 1H), 3.54-3.48 (m, 1H), 2.06 (bs, 3H, -OAc), 2.04 (bs, 3H, -OAc). ¹³C NMR (50MHz, MeOD), δ, 170.1, 169.5, 136.8, 133.3, 129.1, 128.2 x 2, 126.1 x 2, 117.6, 101.5, 100.3, 78.3, 71.8, 70.2, 68.6, 66.3, 20.7, 20.6. ESI MS (m/z): 415 [M+Na]. Anal. Cal. for C₂₀H₂₄O₈: C, 61.22, H, 6.16; Found: C, 61.29, H, 6.10.
Prepared by general procedure 2 using silylethanol-β-D-glucopyranoside 8 (280 mg, 1 mmol) to give the corresponding product 15a in 95% yield. 1H NMR (200 MHz, CDCl$_3$), δ, 7.47-7.33 (m, 5H, Ar), 5.50 (bs, 1H, PhCH), 5.36-5.27 (m, 2H), 4.99 (t, $J = 8.0$ Hz, 1H), 4.61 (d, $J = 8.0$ Hz, 1H), 4.39 (dd, $J = 4.8$, 10.4 Hz, 1H), 4.04-3.99 (m, 2H), 3.86-3.56 (m, 2H), 2.05, 2.04 (s, 6H, 2 x -OAc), 1.03-0.91 (m, 2H), 0.07, 0.02, 0.01 (s, 9H, -Si(CH$_3$)$_3$). ESI MS (m/z): 358 [M+Na]. Anal. Cal.for C$_{17}$H$_{19}$O$_7$: C, 60.89, H, 5.71; Found: C, 60.80, H, 5.79.

Prepared by general procedure 2 using methyl-α-D-mannopyranoside 9 (194 mg, 1 mmol) to give the corresponding product 16a in 95% yield. IR (CHCl$_3$) ν 1750, 1456, 1370, 1242, 1220, 1030, 894, 759 cm$^{-1}$; 1H NMR (200MHz, CDCl$_3$), δ, 7.47-7.26 (m, 5H, Ar), 5.58 (bs, 1H), 5.43-5.34 (m, 2H), 4.67 (d, $J = 3.3$ Hz, 1H), 4.31 (dd, $J = 2.7$, 8.6 Hz, 1H), 4.05-3.81 (m, 3H), 3.41 (bs, 3H, -OMe), 2.17 (s, 3H, -OAc), 2.02 (s, 3H, -OAc). 13C NMR (CDCl$_3$, 50MHz), δ, 169.9, 169.8, 137.2, 129.6, 128.4 x 2, 126.9 x 2, 101.9, 98.3, 75.7, 70.1, 68.7, 68.3, 63.8, 55.1, 20.8, 20.7. ESI MS (m/z): 389 [M+Na]. Anal. Cal.for C$_{18}$H$_{22}$O$_8$: C, 59.01, H, 6.05; Found: C, 59.09, H, 6.11.

Prepared by general procedure 2 using thio-β-D-galactopyranoside 10 (272 mg, 1 mmol) to give the corresponding product 17a in 95% yield. The spectroscopic data was found in agreement with the reported one.S1
Prepared by general procedure 2 using 2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside 11 (401 mg, 1 mmol) to give the corresponding product 18a in 95% yield. The spectroscopic data was found in agreement with the reported one.S1

Prepared by general procedure 3 using methyl-α-D-glucopyranoside 1 (194 mg, 1 mmol) to give the corresponding product 19a in 95% yield. The spectroscopic data was found in agreement with the reported one.S2 IR (CHCl\textsubscript{3}) \(\nu\) 3462, 2922, 1747, 1496, 1453, 1371, 1241, 1053 cm-1; \(^1\)H NMR (400MHz, CDCl\textsubscript{3}), \(\delta\), 7.37-7.29 (m, 5H, -Ar), 5.30 (t, \(J = 10.0\) Hz, 1H), 4.91 (d, \(J = 3.6\) Hz, 1H), 4.87 (dd, \(J = 3.6, 10.4\) Hz, 1H), 4.61 (dd, \(J = 12.0, 20.4\) Hz, 2H), 3.82-3.72 (m, 4H), 3.39 (bs, 3H, -OMe), 2.09 (s, 3H, -OAc), 2.07 (s, 3H, -OAc). \(^13\)C NMR (CDCl\textsubscript{3}, 50MHz), \(\delta\), 171.0, 170.3, 137.9, 128.4, 127.9, 127.8, 127.7, 127.6, 97.0, 73.7, 70.7, 70.3, 70.7, 69.4, 53.9. ESI MS (m/z): 381 [M+Na]. Anal. Cal for C\textsubscript{18}H\textsubscript{24}O\textsubscript{8}: C, 58.69, H, 6.57; Found: C, 58.61, H, 6.70.

Prepared by general procedure 3 using thio-β-D-glucopyranoside 5 (272 mg, 1 mmol) to give the corresponding product 20a in 85% yield. The spectroscopic data was found in agreement with the reported one.S1
Prepared by general procedure 3 using allyl-β-D-glucopyranoside 6 (220 mg, 1 mmol) to give the corresponding product 21a in 85% yield. IR (CHCl₃) v 3467, 2925, 2858, 1751, 1496, 1454, 1367, 1242, 1221, 1055 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ, 7.34-7.30 (m, 5H, Ar), 5.94-5.75 (m, 1H), 5.30-5.10 (m, 2H), 5.00-4.85 (m, 2H), 4.68-4.50 (m, 3H), 4.37-4.29 (m, 1H), 4.09 (dd, J = 6.0, 13.0 Hz, 1H), 3.80-3.72 (m, 3H), 3.55 (dd, J = 4.6, 9.4 Hz, 1H), 13C NMR (CDCl₃, 50MHz), δ, 171.6, 170.3, 137.7, 133.5, 128.4 x 2, 127.7 x 2, 117.3, 99.5, 94.8, 75.6, 74.2, 73.1, 71.4, 70.7, 69.9, 68.3, 20.9, 20.7. ESI MS (m/z): 417 [M+Na]. Anal. Cal. for C₂₀H₂₆O₈: C, 60.90, H, 6.64; Found: C, 60.98, H, 6.69.

Prepared by general procedure 3 using p-methoxybenzyl-β-D-glucopyranoside 7 (286 mg, 1 mmol) to give the corresponding product 22a in 87% yield. The spectroscopic data was found in agreement with the reported one.⁵²

Prepared by general procedure 3 using silylethanol-β-D-glucopyranoside 8 (280 mg, 1 mmol) to give the corresponding product 23a in 95% yield. IR (CHCl₃) v 3461, 3952, 1753, 4996, 1419, 1365, 1247, 1222, 1055, 859, 838 cm⁻¹; ¹H NMR (400 MHz, CDCl₃), δ, 7.33-7.27 (m, 5H, Ar), 5.03 (t, J = 9.2 Hz, 1H), 4.88 (dd, J = 8.0, 9.6 Hz, 1H), 4.59 (d, J = 6.4 Hz, 2H), 4.48 (d, J = 7.6 Hz, 1H), 3.96 (dddd, J = 5.6, 10.0, 15.6 Hz, 1H), 3.78 (d, J = 4.8 Hz, 2H), 3.73 (d, J = 9.6 Hz, 1H), 3.57-3.56 (m, 2H), 2.05 (s, 3H, -OAc), 2.02 (s, 3H, -OAc), 0.96-0.88 (m, 2H), -0.00 (bs, 9H, -Si(CH₃)₃). ¹³C NMR (CDCl₃); δ, 172.7, 171.0, 139.0, 129.0, 129.8, 129.3, 129.2, 129.1, 101.5, 77.2, 75.1, 75.0, 72.9, 72.0, 71.4, 68.1, 22.2, 22.1, 19.3, -0.0. ESI MS (m/z): 477 [M+Na]. Anal. Cal. for C₂₂H₃₄OsSi: C, 58.13, H, 7.54; Found: C, 58.19, H, 7.59.
Prepared by general procedure 3 using methyl-\(\alpha\)-D-mannopyranoside 9 (194 mg, 1 mmol) to give the corresponding product 24a in 98% yield. IR (CHCl\(_3\)) \(\nu\) 3467, 2917, 1749, 1496, 1453, 1370, 1245, 1225, 1054, 1080 cm\(^{-1}\); \(^1\)H NMR (200MHz, CDCl\(_3\)), \(\delta\), 7.27-7.21 (m, 5H, Ar), 5.14-5.09 (m, 2H), 4.61-4.60 (m, 2H), 4.52 (dd, \(J = 11.4\) Hz, 1H), 4.12-4.00 (m, 1H), 3.82-3.76 (m, 2H), 3.33 (s, 3H, -OMe), 2.02 (s, 3H, -OAc), 2.01 (s, 3H, -OAc). \(^{13}\)C NMR (50 MHz, CDCl\(_3\)), \(\delta\) 171.5, 170.9, 138.5, 128.5, 128.4, 127.8, 127.7, 127.6, 99.4, 80.3, 75.1, 74.9, 74.8, 72.0, 69.0, 53.4, 20.2, 20.1. ESI MS (m/z): 391 [M+Na]. Anal. Cal. for C\(_{18}\)H\(_{24}\)O\(_8\): C, 58.69, H, 6.57; Found: C, 58.72, H, 6.50.

Prepared by general procedure 3 using thio-\(\beta\)-D-galactopyranoside 10 (272 mg, 1 mmol) to give the corresponding product 25a in 96% yield. The spectroscopic data was found in agreement with the reported one. \(^{51}\)

References:

Copies of 1H NMR and 13C NMR of the representative compounds.
1H NMR of compound 1b

13C NMR of compound 1b
1H NMR of compound 2a

13C NMR of compound 2a
1H NMR of compound 3a

13C NMR of compound 3a
1H NMR of compound 5a

13C NMR of compound 5a
1H NMR of compound 9a

13C NMR of compound 9a
1H NMR of compound 12a

13C NMR of compound 12a
1H NMR of compound 12b

13C NMR of compound 12b
1H NMR of compound 13a

13C NMR of compound 13a
1H NMR of compound 16a

13C NMR of compound 16a
1H NMR of compound 19a

1C NMR of compound 19a
1H NMR of compound 20a

13C NMR of compound 20a
1H NMR of compound 24a

13C NMR of compound 24a
1H NMR of compound 25a

13C NMR of compound 25a