Electronic Supplementary Information

Homoselenacalix[4]arenes: synthetic exploration and metallosupramolecular chemistry

Joice Thomas, a Liliana Dobrzanska, a Kristof Van Hecke, b,c Mahendra P. Sonawane, a Koen Robeyns, b,d Luc Van Meervelt, b Krzysztof Woźniak, e Mario Smet, a Wouter Maes* a,f and Wim Dehaen* a

a Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium. Fax: +32 16327990; Tel: +32 16327439; E-mail: wim.dehaen@chem.kuleuven.be
b Biomolecular Architecture, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium.
c Inorganic and Physical Chemistry Group, Ghent University, Krijgslaan 281, Building S3, 9000 Ghent, Belgium.
d Institute of Condensed Matter and Nanosciences (IMCN), Université Catholique de Louvain (UCL), Bâtiment Lavoisier, Place Louis Pasteur 1 (Bie 3), 1348 Louvain-la-Neuve, Belgium.
e Department of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland.
f Design & Synthesis of Organic Semiconductors (DSOS), Institute for Materials Research (IMO-IMOMEC), Hasselt University, Universitaire Campus, Agoralaan 1 – Building D, 3590 Diepenbeek, Belgium. Fax: +32 11268299; Tel: +32 11268312; E-mail:wouter.maes@uhasselt.be

Table of contents

1. 1H, 13C and 77Se NMR spectra for the novel precursors and homoselenacalix[n]arenes S2
2. X-ray crystallographic general experimental data and additional figures for the structures of homoselenacalix[n]arenes 4·THF, 10, 19, 20, 21 and 22 S15
4. References S22
1. 1H, 13C and 77Se NMR spectra for the novel precursors and homoselenacilix[n]arenes

10 (300 K)

10 (328 K)
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
2. X-ray crystallographic general experimental data and additional figures for the structures of homoselenacalix[4]arenes 4·THF, 10, 19, 20, 21 and 22

Single crystal X-ray diffraction data for compounds 10, 19, 20 and 21 were collected on a SMART 6000 diffractometer with CCD detector using CuKα radiation (λ = 1.54178 Å, crossed Goebel mirrors) and phi and omega scans.\(^1\) Cell refinement and data reduction were performed using the program SAINT.\(^2\) Measurements for 4·THF and 22 were performed on a Kuma KM4CCD κ-axis diffractometer with graphite-monochromated MoKα radiation (λ = 0.71073 Å). Data collection and data reduction were carried out with the Oxford Diffraction programs.\(^3\) The structures were solved by direct methods and refined by full-matrix least squares on |F\(^2\)| using the SHELXS-97 program.\(^4\) All data collections were carried out at 100(2) K to minimize solvent loss, possible structural disorder and thermal motion effects. All non-hydrogen atoms were anisotropically refined and the hydrogen atoms were placed on calculated positions with temperature factors fixed at 1.2 times U\(_{eq}\) of the parent atoms and 1.5 times U\(_{eq}\) for methyl groups. The program Mercury was used to prepare molecular graphics images.\(^5\) Some of the tert-butyl groups were disordered over two orientations, namely C26 in 10, C70 in 19 and C34 in 21 as well as the counter ions in 21 and 22 (PF\(_6^–\) located on a special position).
Fig. S1 Overlay of the structure of homoselenacalix[4]arene 10 (shown in red) with the previously reported analogous homothiacalix[4]arene⁶ (shown in green); Se/S atoms are represented by balls.

Fig. S2 Overlay of bicyclohomoselenacalix[4]arene 19 (shown in red) with the earlier reported analogous bicyclohomothiacalix[4]arene⁶ (shown in green), showing a different geometry around one of the heteroatom bridges.
Fig. S3 Molecular structure of the THF solvate of homoselenacalix[4]arene 4 (thermal ellipsoids are drawn at 50% probability).

Fig. S4 Overlay of Ag(I) complexes 21 (purple) and 22 (blue-grey), presenting approximately the same conformation of the calixarene units adopted after complexation.
Fig. S5 Capped-sticks representation of the (non-refined) structure of bis(selenacyclophane) 20.

Fig. S6 Observed high resolution FTMS (ESI⁺) isotopic pattern for homoselenacalix[4]arene 10 ([M+Na]⁺).
Fig. S7 Observed high resolution FTMS (ESI⁺) isotopic pattern for complex 21 ([M-CF₃SO₃]⁺).
Fig. S8 Observed high resolution FTMS (ESI+) isotopic pattern for complex 22 ([M-PF\textsubscript{6}]+).
4. References