SUPPORTING INFORMATION

Preparation of enantioenriched iodinated pyrrolinones by iodo-
cyclization of α-amino-ynones.

Rosella Spina, a,b Evelina Colacino, a Bartolo Gabriele, b Giuseppe Salerno, c Jean Martinez, a Frédéric Lamaty* a

a Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS – UM I-UM II Université de Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France. Fax: +33 (0)4 67 14 48 66; Tel: +33 (0)4 67 14 38 77; E-mail: frederic.lamaty@univ-montp2.fr
b Dipartimento di Scienze Farmaceutiche, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
c Dipartimento di Chimica, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.

I. General remarks
II. Spectral data for UNCAs
III. Synthesis of α-amino-ynones 2a-2i
IV. Typical experimental procedure for iodocyclization reaction in CH3CN
V. Cross-coupling reactions: pyrrolin-4-one (4e and 5e).
VI. Spectral data.

I. General remarks
All commercially available compounds were used as received from commercial suppliers (Aldrich, Fluka, Chem, ISOCHEM). Boc-Ala-NCA and Boc-Phe-NCA were diluted in AcOEt and washed with a saturated solution of NaHCO3 to remove traces of corresponding acid derivative. The solvents were purified by distillation over a drying agent. NMR spectra were recorded at room temperature with the appropriate deuterated solvent (CDCl3, CD3OD or d6-DMSO). Chemical shifts (δ) of 1H NMR and 13C NMR spectra are reported in ppm relative to residual solvent signals (CHCl3 in CDCl3: δ = 7.27 ppm for 1H and CDCl3: δ = 77.04 ppm for 13C NMR. J values are given in Hz. 1H and 13C NMR spectra were registered on Bruker Avance-300 MHz and Bruker Avance 400 MHz. Microwave-assisted reactions were performed in sealed vessel with a Biotage Initiator 60 EXP® instrument. The temperature was measured with an IR sensor on the outer surface of the reaction vial. Analytical high performance liquid chromatography (HPLC) was performed on a
Waters Millenium 717 equipped with Autosampler, with a variable wavelength diode detector using a CHROMOLITH RP18 column (50 x 4.6 mm), flow 5 mL/min, linear gradient CH3CN in water 0-100% (+ 0.1% TFA) in 4.5 min. LC-MS analysis were performed with HPLC Waters Alliance 2695 (UV Waters 2489), column Onyx C18, (25 x 4.6 mm), flow 3 mL/min linear gradient CH3CN in water 0-100% (+ 0.1% HCO2H) in 2.5 min. HRMS analysis were performed on a Q-Tof (Waters, 2001) with ESI ionization mode. Chiral HPLC analysis were performed with Beckman Coulter System Gold 126 Solvent Module and Beckman Coulter System Gold 168 Detector. Columns: Chiralpak AD-H (0.46 x 25 cm), Chiral OD-H (0.46 x 25 cm); Chiral HPLC reverse phase: Chiralcel OD-RH (0.46 x 25 cm). [αD] measurement were performed on a Perkin Elmer Instrument Polarimeter, model 341 Polarimeter, OROT 589 nm, 20°C, [10 mg/mL]; solvent: dichloromethane.

II. Spectral data for UNCAs.

Boc-Ala-NCA, CAS Registry Number: [125814-30-4]; 1H NMR (CDCl3, 400 MHz) δ (ppm): 4.67 (q, J = 6.9 Hz, 1H), 1.69 (d, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ (ppm): 166.7, 147.4, 146.2, 86.0, 55.8, 27.9, 16.9.

Boc-Val-NCA, CAS Registry Number: [141468-55-5]; 1H NMR (CDCl3, 400 MHz) δ (ppm): 4.56 (d, J = 3.5 Hz, 1H), 2.63-2.47 (m, 1H), 1.58 (s, 9H), 1.20 (d, J = 7.1 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz) δ (ppm): 164.8, 147.6, 146.6, 86.0, 64.6, 30.0, 27.9, 17.8, 15.7; ESI-MS m/z: 266.1 (M+Na)+, 188.2 (M+H-t-Bu)+, 509.2 (2M+Na)+.

Boc-Phe-NCA, CAS Registry Number: [142955-51-9]; 1H NMR (CDCl3, 400 MHz) δ (ppm): 7.37-7.34 (m, 3H), 7.13-7.10 (m, 2H), 4.95 (dd, J = 2.6, 8.5 Hz, 1H), 3.57 (dd, J = 5.8, 14.2 Hz, 1H), 3.36 (dd, J = 2.6, 14.2 Hz, 1H), 1.66 (s, 9H); 13C NMR (CDCl3, 100 MHz) δ (ppm): 165.8, 147.7, 145.8, 132.3, 129.5, 129.2, 128.3, 86.1, 60.8, 35.3, 28.0; ESI-MS m/z: 292.0 (M+H)+, 314.1 (M+Na)+, 236.0 (M+H-t-Bu)+, 605.3 (2M+Na)+.

III. Synthesis of α-amino-yrones 2a-2i.
(1-Benzyl-2-oxo-4-phenyl-but-3-ynyl)-carbamic acid tert-butyl ester (2a). A solution of phenylacetylene (264 mg, 2.58 mmol) in anhydrous THF (6 mL) was added dropwise to a stirred solution of BuLi (1.6 mL of a 1.6 M solution in hexane, 2.58 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at -78°C under stirring, a solution of LiBr (159 g, 1.82 mmol) in THF (3 mL) was added. After 0.5 h, Boc-Phe-NCA (500 mg, 1.72 mg), diluted in anhydrous THF, was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH₄Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO₄. After filtration, the solvent was evaporated to obtain crude 2a that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to afford 351 mg (60 %) of the title compound as a yellow solid.

M.p. 90-94°C, e.e. 10 %; ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 7.60 (d, J = 7.5 Hz, 2H), 7.52-7.50 (m, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.33-7.23 (m, 6H), 5.15 (d, J = 7.4 Hz, 1H), 4.82 (dd, J = 6.1, 13 Hz, 1H), 3.34 Hz (dd, J = 5.8, 14.0 Hz, 1H), 3.29 (dd, J = 5.8, 14.0 Hz, 1H), 1.45 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 186.1, 155.2, 135.8, 133.4, 131.3, 129.7, 128.8, 128.7, 127.2, 119.7, 95.0, 86.6, 80.2, 62.2, 37.6, 28.5; ESI-MS m/z: 350.2 (M+H)⁺, 372.3 (M+Na)⁺, 294.2 (M+H-t-Bu)⁺, 250.2 (M+H-Boc)⁺, 699.4 (2M+H)⁺; HMRS (ESI) calcd. For C₂₂H₂₄NO₃ (M+H)⁺: 350.1756, found: 350.1748; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/ min, λ = 214 nm, t.major = 21.267 min, t.minor = 17.867 min.

Chiral HPLC Chromatogram of 2a

(1-Methyl-2-oxo-4-phenyl-but-3-ynyl)-carbamic acid tert-butyl ester (2b). A solution of
phenylacetylene (705 mg, 6.9 mmol) in anhydrous THF (3 mL) was added dropwise to a stirred solution of BuLi (4.3 mL of a 1.6 M solution in hexane, 6.9 mmol) in anhydrous THF (5 mL) at -40°C. To the resulting mixture, maintained at -40°C under stirring, a solution of LiBr (426 g, 4.9 mmol) in THF (3 ml) was added. After 0.5 h, Boc-Ala-NCA (1.00 g, 4.65 mmol), diluted in anhydrous THF (3 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH₄Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO₄. After filtration, the solvent was evaporated to obtain crude 2b that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to afford 385 mg, (35%) of the title compound as a pale yellow solid.

CAS Registry Number:[1169845-20-8]; m.p. 65-67°C; lit[1] 64-66°C. e.e. 65 %; [α]D = +0.005° (10 mg/mL CH₂Cl₂); ¹H NMR (CDCl₃, 300 MHz) δ (ppm): 7.61-7.59 (m, 2H), 7.49-7.38 (m, 3H), 5.24 (d, J = 5.7 Hz, 1H), 4.57-4.52 (m, 1H), 1.51 (d, 3H), 1.46 (s, 9H); ¹³C NMR (CDCl₃, 75 MHz) δ (ppm): 187.1, 155.1, 133.1, 131.0, 128.6, 119.5, 94.3, 85.8, 79.9, 56.9, 28.3, 17.8; ESI-MS m/z 274.2 (M+H)⁺, 296.2 (M+Na)⁺, 218.2 (M+H-t-Bu)⁺, 174.0 (M+H-Boc)⁺, 569.2 (2M⁺ Na)⁺; HMRS (ESI) calcd. For C₁₆H₂₀NO₃ (M+H)⁺: 274.1443, found: 274.1442; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/ min, λ = 214 nm, t_major = 23.683 min, t_minor = 22.050 min.

Chiral HPLC Chromatogram of 2b

(1-Methyl-2-oxo-oct-3-ynyl)-carbamic acid tert-butyl ester (2c). A solution of hexyne (254 mg, 3.09 mmol) in anhydrous THF was added dropwise to a stirred solution of BuLi (1.9 mL of a 1.6 M solution in hexane, 3.09 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at
-78°C, under stirring, a solution of LiBr (190 g, 2.18 mmol) in THF (3 mL) was added. After 0.5 h, Boc-Ala-NCA (500 mg, 2.32 mmol), diluted in anhydrous THF, was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4 h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH₄Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO₄. After filtration, the solvent was evaporated to afford the pure product 2c (560 mg, 95%) of the title compound.

Pale oil, e.e. 94%; [α]D = +0.026° (10 mg/mL CH₂Cl₂); ¹H NMR (CDCl₃, 400 MHz), δ (ppm): 5.20 (d, J = 7.5 Hz, 1H), 4.42-4.35 (m, 1H), 2.40 (t, J = 6.8 Hz, 2H), 1.62-1.40 (m, 4H), 1.45 (s, 9H), 0.93 (t, J = 7.1 Hz, 3H); ¹³C NMR (CDCl₃, 100 MHz), δ (ppm): 187.1, 155.0, 98.3, 79.8, 78.8, 57.0, 29.6, 28.3, 28.0, 22.0, 17.9, 13.5; ESI-MS m/z 254.1 (M+H)⁺, 276.2 (M+Na)⁺, 198.1 (M+H-t-Bu)⁺, 154.1 (M+H-Boc)⁺, 529.3 (2M+Na)⁺; HMRS (ESI) calcd. For C₁₄H₂₄NO₃ (M+H)⁺: 254.1756, found: 254.1756; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/min, λ = 214 nm, t_major = 13.017 min, t_minor = 11.65 min.

Chiral HPLC Chromatogram of 2c

(4-Cyclopropyl-1-methyl-2-oxo-but-3-ynyl)-carbamic acid tert-butyl ester (2d). A solution of cyclopropylacetylene (160 mg, 2.42 mmol) in anhydrous THF (1.5 mL) was added dropwise to a stirred solution of BuLi (1.5 mL of a 1.6 M solution in hexane, 2.42 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at -78°C under stirring, a solution of LiBr (171 mg, 1.97 mmol) in THF (1.5 mL) was added. After 0.5 h, Boc-Ala-NCA (400 mg, 1.86 mmol), diluted in anhydrous THF (2.5 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4 h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH₄Cl, the mixture was extracted with ethyl acetate. The
combined organic layers were washed with brine and then dried over MgSO$_4$. After filtration, the solvent was evaporated affording 401 mg of the pure product 2d (80 %).

Pale yellow solid, m.p. 62-65°C, e.e. 90 %; $[\alpha]^D_\text{D} = + 16^\circ$ (10 mg/mL CH$_2$Cl$_2$); 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 5.18 (d, $J = 5.5$ Hz, 1H), 4.35 (t, $J = 7.2$ Hz, 1H), 1.44 (s, 9H), 1.44 (m, 1H), 1.39 (d, $J = 6.0$ Hz, 3H), 1.05-0.98 (m, 2H), 0.97-0.91 (m, 2H); 13C NMR (CDCl$_3$, 100 MHz) δ (ppm): 186.8, 155.0, 102.6, 79.8, 74.6, 56.8, 28.3, 17.9, 10.0, -0.15; ESI-MS m/z: 238.1 (M+H)$^+$, 260.1 (M+Na)$^+$, 182.1 (M+H-t-Bu)$^+$, 138.1 (M+H-Boc)$^+$, 475.2 (2M+H)$^+$, 497.1 (2M+Na)$^+$; HMRS (ESI) calcd. For C$_{13}$H$_{20}$NO$_3$ (M+H)$^+$ 238.1445, found: 238.1443; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 214$ nm, $t_{\text{major}} = 8.783$ min, $t_{\text{minor}} = 9.383$ min.

Chiral HPLC Chromatogram of 2d

(1-Isopropyl-2-oxo-4-phenyl-but-3-ynyl)-carbamic acid tert-butyl ester (2e). A solution of phenylacetylene (315 mg, 3.09 mmol) in anhydrous THF (5 mL) was added dropwise to a stirred solution of BuLi (1.9 mL of a 1.6 M solution in hexane, 3.09 mmol) in anhydrous THF at -60°C. To the resulting mixture, maintained at -60°C under stirring, a solution of LiBr (190 g, 2.18 mmol) in THF was added. After 0.5 h, Boc-Val-NCA (500 mg, 2.06 mmol), diluted in anhydrous THF, was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH$_4$Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO$_4$. After filtration, the solvent was evaporated to obtain crude 2e that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
afford 384 mg (62 %), *e.e.* 97%, \([\alpha]^D = +0.035^\circ\).

CAS Registry Number: [1169845-48-0], pale yellow solid, m.p. 102-105°C, litt.\(^1\) 100-102°C, \(^1\)H NMR (CDCl\(_3\), 300 MHz), \(\delta\) (ppm): 7.59-7.59 (m, 2H), 7.49-7.45 (m, 1H), 7.41-7.37 (m, 2H), 5.17 (d, \(J = 8.9\) Hz, 1H), 4.51 (dd, \(J = 3.5, 8.9\) Hz, 1H), 2.53-2.46 (m, 1H), 1.45 (s, 9H), 1.08 (d, \(J = 6.8\) Hz, 3H), 0.89 (d, \(J = 6.8\) Hz, 3H); \(^1^3\)C NMR (CDCl\(_3\), 75 MHz), \(\delta\) (ppm): 187.0, 155.8, 133.1, 130.1, 128.6, 119.6, 94.1, 86.7, 79.8, 65.9, 30.5, 28.3, 19.7, 16.7; ESI-MS \textit{m/z} 302.2 (M+H)\(^+\), 324.0 (M+Na)\(^+\), 246.1(M+H-t-Bu)\(^+\), 202.1 (M+H-Boc)\(^+\); HMRS (ESI) calcd. For C\(_{18}\)H\(_{24}\)NO\(_3\) (M+H): 302.1756, found: 302.1751; HPLC chiralpak AD-H, \(i\)-propanol/ hexane = 2/98, flow rate 1.0 ml/ min, \(\lambda\) 214 nm, t\(_{major}\) = 19.95 min, t\(_{minor}\) = 17.533 min.

Chiral HPLC Chromatogram of 2e

(1-Isopropyl-2-oxo-oct-3-ynyl)-carbamic acid \textit{tert}-butyl ester (2f). A solution of hexyne (254 mg, 3.09 mmol) in anhydrous THF was added dropwise to a stirred solution of BuLi (1.9 mL of a 1.6 M solution in hexane, 3.09 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at -78°C under stirring, a solution of LiBr (190 g, 2.18 mmol) in THF (3 mL) was added. After 0.5 h, Boc-Val-NCA (500 mg, 2.06 mmol), diluted in anhydrous THF (3 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH\(_4\)Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO\(_4\). After filtration, the solvent was evaporated to obtain
crude 2f that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to afford 472 mg (81%) of the title compound 2f.

Pale oil, e.e. 96%, [α]D = + 60° (10 mg/mL CH2Cl2); 1H NMR (CDCl3, 400 MHz), δ (ppm): 5.08 (d, J = 8.6 Hz, 1H), 4.35 (dd, J = 3.6, 8.6 Hz, 1H), 2.39 (t, J = 7.0 Hz, 2H), 1.60-1.53 (m, 2H), 1.47-1.38 (m, 2H), 1.43 (s, 9H), 1.02 (d, J = 6.9 Hz, 3H), 0.92 (t, J = 7.3 Hz, 3H), 0.81 (d, J = 6.9 Hz, 3H); 13C NMR (CDCl3, 100 MHz), δ (ppm): 187.0, 155.7, 97.7, 79.7, 79.6, 65.8, 30.4, 29.6, 28.2, 21.9, 19.7, 18.7, 16.5, 13.4; ESI-MS m/z 282.2 (M+H)+, 304.2 (M+Na)+, 226.2 (M+H-t-Bu)+, 182.2 (M+H-Boc)+, 563.3 (2M+H)+, 585.2 (2M+ Na)+; HMRS (ESI) calcd. for C16H28NO3 (M+H)+: 282.2069, found: 282.2060; HPLC chiralpak AD-H, i-propanol/hexane = 2/98, flow rate 1.0 mL/min, λ = 214 nm, t_major = 11.55 min, t_minor = 9.383 min.

Chiral HPLC Chromatogram of 2f

(4-Cyclopropyl-1-isopropyl-2-oxo-3-ynyl)-carbamic acid tert-butyl ester (2g). A solution of cyclopropylacetylene (284 mg, 4.3 mmol) in anhydrous THF was added dropwise to a stirred solution of BuLi (2.7 mL of a 1.6 M solution in hexane, 4.3 mmol) in anhydrous THF at -60°C. To the resulting mixture, maintained at -60°C under stirring, a solution of LiBr (304 mg, 3.49 mmol) in THF (3 mL) was added. After 0.5 h, Boc-Val-NCA (800 mg, 3.29 mmol), diluted in anhydrous THF, was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4 h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH4Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO4. After filtration, the solvent was
evaporated to obtain crude 2g that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to afford 816 mg (94%) of 2g as a pure compound.

White solid, m.p. 40-45°C, e.e. 100%, $[\alpha]^{19}_D = +50^\circ$ (10 mg/mL CH$_2$Cl$_2$); 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 5.06 (d, $J = 8.5$ Hz, 1H), 4.31 (dd, $J = 3.7, 8.9$ Hz, 1H), 2.38-2.32 (m, 1H), 1.48-1.35 (m, 1H), 1.49 (s, 9H), 1.00 (d, $J = 6.9$ Hz, 3H), 0.98-0.90 (m, 4H), 0.80 (d, $J = 6.9$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 186.7, 155.7, 102.3, 79.6, 75.4, 65.6, 30.4, 28.2, 26.8, 19.6, 16.5, 9.9, 0.18; ESI-MS m/z 266.2 (M+H)$^+$, 288.2 (M+Na)$^+$, 210.1 (M+H-i-Bu)$^+$, 166.1 (M+H-Boc)$^+$, 531.3 (2M+H)$^+$, 553.3 (2M+Na)$^+$; HMRS (ESI) calcd. For C$_{15}$H$_{24}$NO$_3$ (M+H)$^+$: 266.1756, found: 266.1750; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/ min, $\lambda = 214$ nm, t = 18.65 min.

Chiral HPLC Chromatogram of 2g

(1-Benzyl-4-cyclopropyl-2-oxo-but-3-ynyl)-carbamic acid tert-butyl ester (2h). A solution of cyclopropylacetylene (147 mg, 2.24 mmol) in anhydrous THF (1.5 mL) was added dropwise to a stirred solution of BuLi (1.4 mL of a 1.6 M solution in hexane, 2.24 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at -78°C under stirring, a solution of LiBr (158 mg, 1.82 mmol) in THF (1.5 mL) was added. After 0.5 h, Boc-Phe-NCA (500 mg, 1.72 mmol), diluted in anhydrous THF (2.5 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH$_4$Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO$_4$. After filtration,
the solvent was evaporated to obtain crude 2h that was purified by column chromatography on silica gel (9:1 v/v cyclohexane-AcOEt) to afford 343 mg (64 %) of title compound 2h.

White solid; m.p. 88-90°C; e.e. 18 %; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 7.32-7.24 (m, 3H), 7.19-7.16 (m, 2H), 5.05 (d, $J = 7.6$ Hz, 1H), 4.63 (dd, $J = 6.0$, 13.7 Hz, 1H), 3.21 (dd, $J = 5.9$, 14.0 Hz, 1H), 3.16 (dd, $J = 5.9$, 14.0 Hz, 1H), 1.46-1.39 (m, 1H), 1.42 (s, 9H), 1.05-0.98 (m, 2H), 0.97-0.90 (m, 2H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 185.6, 155.1, 135.8, 129.5, 128.5, 127.0, 103.1, 79.9, 75.2, 61.8, 37.5, 28.3, 10.1, 10.0, -0.10; ESI-MS m/z: 314.1 (M+H)$^+$, 336.1 (M+Na)$^+$, 258.1 (M+H-t-Bu)$^+$, 214.1 (M+H-Boc)$^+$, 627.2 (2M+H)$^+$, 649.1 (2M+Na)$^+$; HMRS (ESI) calcd. For C$_{19}$H$_{24}$N$_3$O$_3$ (M+H)$^+$: 314.1756, found: 314.1761; HPLC chiralpak AD-H, i-propanol / hexane = 2/98, flow rate 1.0 mL/min, $\lambda = 214$ nm, $t_{major} = 21.383$ min, $t_{minor} = 15.467$ min.

Chiral HPLC Chromatogram of 2h

Tert-butyl 5-(4-(dimethylamino)phenyl)-3-oxo-1-phenylpent-4-yn-2-ylcarbamate (2i). A solution of 4-ethynyl-N,N-dimethylaniline (313 mg, 2.16 mmol) in anhydrous THF (1.5 mL) was added dropwise to a stirred solution of BuLi (1.4 mL of a 1.6 M solution in hexane, 2.16 mmol) in anhydrous THF at -78°C. To the resulting mixture, maintained at -78°C under stirring, a solution of LiBr (153 mg, 1.76 mmol) in THF (1.5 mL) was added. After 0.5 h, Boc-Phe-NCA (485 mg, 1.66 mmol), diluted in anhydrous THF (2.5 mL), was slowly added under nitrogen at the same temperature. The resulting mixture was stirred for additional 4h and then allowed to warm up to room temperature. After quenching with a saturated solution of NH$_4$Cl, the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine and then dried over MgSO$_4$. After filtration, the solvent was evaporated to obtain crude 2i that was purified by column chromatography on silica gel (8:2 cyclohexane-AcOEt) to afford 299 mg (46 %) of the title.
compound.

Yellow solid; m.p. 132-134°C; e.e. 95 %; \([\alpha]^{D} = -102^\circ\) (10 mg/mL CH\(_2\)Cl\(_2\)); \(^1\)H NMR (CDCl\(_3\), 400 MHz), \(\delta\) (ppm): 7.48 (d, \(J = 8.9\) Hz, 2H), 7.31-7.24 (m, 5H), 6.67 (d, \(J = 9.0\) Hz, 2H), 5.22 (d, \(J = 7.8\) Hz, 1H), 4.82 (dd, \(J = 5.9, 13.5\) Hz, 1H), 3.34 (dd, \(J = 5.9, 14.0\) Hz, 1H), 3.28 (dd, 5.7, 14.0 Hz, 1H), 3.1 (s, 6H), 1.46 (s, 9H); \(^{13}\)C NMR (CDCl\(_3\), 100 MHz), \(\delta\) (ppm): 185.5, 155.2, 152.1, 136.2, 135.5, 129.8, 128.6, 127.0, 111.6, 105.0, 99.9, 87.6, 79.9, 61.9, 40.1, 37.9, 28.5; ESIMS \(m/z\): 393.1 \((M+H)^{+}\), 337.1 \((M+H-t-Bu)^{+}\), 293.1 \((M+H-Boc)^{+}\); HMRS (ESI) calcd. For C\(_{24}\)H\(_{29}\)N\(_2\)O\(_3\) \((M+H)^{+}\): 393.2178, found: 393.2183; HPLC chiralpak AD-H, \(t\)-propanol / hexane = 10/90, flow rate 1.0 mL/ min, \(\lambda = 214\) nm, \(t_{major} = 29.483\) min, \(t_{minor} = 27.000\) min.

Chiral HPLC Chromatogram of 2i

IV. Typical experimental procedure for iodocyclization reaction in CH\(_3\)CN.

A typical experimental procedure for the iodocyclisation of 2e is described. To a stirred solution of substrate 2 (0.1 mmol), NaHCO\(_3\) (25.2 mg, 0.3 mmol) in 0.5 mL of CH\(_3\)CN, a solution of I\(_2\) (76.2 mg) in 0.5 mL of CH\(_3\)CN was added. After 2h at r.t, the organic phase was evaporated under vacuum. The crude was dissolved in AcOEt and washed with a saturated solution of thiosulphate (Na\(_2\)S\(_2\)O\(_3\)) to neutralize the excess of iodine, affording the product 3.

\(\beta\)-Iodopyrrolin-4-one (3b). Based on the typical procedure, and starting from 18.1 mg of 2b, 28.7 mg (98% isolated yield) were obtained.
Yellow oil, e.e. 60% ; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 7.49-7.47 (m, 3H), 7.39-7.36 (m, 2H), 4.41 (q, $J = 7.04$ Hz, 1H), 1.64 (d, $J = 7.04$ Hz, 3H), 1.20 (s, 9H). 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 197.3, 170.8, 148.7, 133.3, 130.0, 128.1, 127.8, 83.3, 78.0, 61.8, 27.6, 17.8. ESI-MS m/z 400.0 (M+H)$^+$, 422.1 (M+Na)$^+$, 344.1 (M+H-t-Bu)$^+$, 300.0 (M+H-Boc), 821.1 (2M+Na)$^+$. HMRS (ESI) calcd. For C$_{16}$H$_{19}$NO$_3$I (M+H)$^+$: 400.0410, found: 400.0407. HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL/ min, $\lambda = 214$ nm, $t_{major} = 6.283$ min, $t_{minor} = 5.700$ min.

Chiral HPLC Chromatogram of 3b

\[\text{\beta-Iodopyrrolin-4-one (3c).} \text{ Based on the typical procedure, and starting from 25.7 mg of 2c, 27.9 mg (76\% isolated yield) of 3c were obtained.} \]

Yellow oil, e.e. 78%. 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 4.20 (q, $J = 7.0$ Hz, 1H), 3.16-3.03 (m, 2H), 1.68-1.44 (m, 4H), 1.49 (s, 9H), 1.44 (d, $J = 7.0$ Hz, 3H), 0.98 (t, $J = 7.0$ Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 196.7, 175.3, 148.3, 83.5, 76.8, 76.0, 61.8, 32.0, 29.8, 28.1, 22.8, 17.8, 13.9. ESI-MS m/z 380.1 (M+H)$^+$, 402.0 (M+Na)$^+$, 324.0 (M+H-t-Bu)$^+$. Confirmed by chiral LC/MS. HMRS (ESI) calcd. For C$_{14}$H$_{23}$NO$_3$I (M+H)$^+$: 380.0723, found: 380.0731. HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL/ min, $\lambda = 214$ nm, $t_{major} = 7.267$ min, $t_{minor} = 6.933$ min.

Chiral HPLC Chromatogram of 3c
\textbf{β-Iodopyrroline-4-one (3d).} Based on the typical procedure, and starting from 24.3 mg of 2d, 36.4 mg (98\% isolated yield) of 3d were obtained.

![Chemical structure of 3d]

Yellow oil, e.e. 84\%; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 4.12 (q, $J = 7.0$ Hz, 1H), 2.32-2.24 (m, 1H), 1.47 (s, 9 Hz), 1.45 (d, $J = 7.0$ Hz, 3H), 1.18-1.10 (m, 4H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 197.6, 172.9, 148.9, 83.2, 73.9, 61.6, 28.2, 17.8, 13.4, 10.3, 9.9. ESI-MS m/z 364.0 (M+H)$^+$, 386.0 (M+Na)$^+$, 308.0 (M+H-t-Bu)$^+$. Confirmed by chiral LC/MS. HMRS (ESI) calcd. for C$_{13}$H$_{19}$NO$_3$I (M+H)$^+$: 364.0410, found: 364.0407. HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01\% TFA) = 60/40, flow rate 1.0 mL / min, $\lambda = 214$ nm, $t_{\text{major}} = 5.183$ min, $t_{\text{minor}} = 4.833$ min.

Chiral HPLC Chromatogram of 3d

\textbf{β-Iodopyrroline-4-one (3e).} Based on the typical procedure, and starting from 34.1 mg of 2e, 47.3 mg (98\% isolated yield) of 3e were obtained.

Yellow oil, e.e. 80\%; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 7.49-7.40 (m, 5H), 4.35 (d, $J = 3.5$ Hz, 1H), 2.60 (m, 1H), 1.18 (d, $J = 7.0$ Hz, 3H),
1.16 (s, 9H), 0.95 (d, J = 7.0 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 197.0, 171.2, 149.3, 133.6, 130.0, 128.1, 127.8, 83.1, 80.72, 69.8, 32.2, 27.5, 17.1, 16.8. HMRS (ESI) calcd. for C$_{15}$H$_{23}$NO$_3$I (M+H)$^+$: 428.0723, found: 428.0714. ESI-MS m/z 427.9 (M+H)$^+$, 449.9 (M+Na)$^+$, 371.9 (M+H-t-Bu)$^+$, 327.9 (M+H-Boc). Confirmed by chiral LC/MS.

HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL / min, λ = 214 nm, t_{major} = 8.533 min, t_{minor} = 7.867 min.

Chiral HPLC Chromatogram of 3e

β-Iodopyrrolin-4-one (3f). Based on the typical procedure, and starting from 27.6 mg of 2f, 37.4 mg (96% isolated yield) of 3f were obtained.

Yellow oil, e.e. 93%; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 4.16 (d, J = 3.4 Hz, 1H), 3.24-3.17 (m, 1H), 3.00-2.96 (m, 1H), 2.45-2.39 (m, 1H), 1.67-1.44 (m, 4H), 1.47 (s, 9H), 1.15 (d, J = 7.1 Hz, 3H), 0.96 (t, J = 7.0 Hz, 3H), 0.76 (d, J = 7.0 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 196.0, 175.7, 148.5, 83.4, 77.2; 69.6, 32.3, 31.2, 30.1, 28.1, 22.9, 17.4, 15.9, 13.9; HMRS (ESI) calcd. for C$_{16}$H$_{27}$NO$_3$I (M+H)$^+$: 408.1036, found: 408.1030; ESI-MS m/z 408.0(M+H)$^+$, 429.2 (M+Na)$^+$, 352.0 (M+H-t-Bu)$^+$, 837.1 (2M+Na)$^+$. Confirmed by chiral LC/MS. HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL / min, λ = 214 nm, t_{major} = 10.533 min, t_{minor} = 9.867 min.

Chiral HPLC Chromatogram of 3f
β-Iodopyrrolin-4-one (3g). Based on the typical procedure, and starting from 26.5 mg of 2g, 37.0 mg (95% isolated yield) of 3g were obtained.

Yellow oil, *e.e.* 99%; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 4.13 (d, J = 3.1 Hz, 1H), 2.45-2.39 (m, 1H), 2.28-2.21 (m, 1H), 1.51 (s, 9H), 1.33-1.1 (m, 4H), 1.03 (d, J = 7.0 Hz, 3H), 0.74 (d, J = 7.0 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz), δ (ppm): 197.2, 173.8, 149.3, 83.1, 77.4, 69.6, 31.5, 28.1, 17.2, 16.2, 13.9, 10.6, 9.5. HMRS (ESI) calcd. for C$_{15}$H$_{23}$NO$_3$I (M+H)$^+$: 392.0723, found: 392.0721. ESI-MS m/z 392.0 (M+H)$^+$, 414.0 (M+Na)$^+$, 336.0 (M+H-t-Bu)$^+$. Confirmed by chiral LC/MS. HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL/min, λ = 214 nm, t_{major} = 6.9 min, t_{minor} = 6.617 min.

Chiral HPLC Chromatogram of 3g

β-Iodopyrrolin-4-one (3i). Based on the typical procedure, and starting from 20.4 mg of 2i, 27.4 mg (94% isolated yield) of 3i were obtained.

Orange oil, *e.e.* 86%; 1H NMR (CDCl$_3$, 400 MHz), δ (ppm): 7.32-7.27 (m, 4H), 7.14 (m, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.67 (d, J = 8.3 Hz, 2H), 4.63 (dd, J = 6.3 and 2.4 Hz, 1H), 3.59 (dd, J = 13.3 and 6.3 Hz, 1H), 3.46 (dd, J = 13.3 and 2.4 Hz, 1H), 3.05 (s, 6H), 1.38 (s, 9H); 13C...
VI. Cross-coupling reactions.

Pyrrolin-4-one (4e). A mixture of β-iodopyrrolin-4-one 3e (1 equiv., 41.7 mg), Pd(OAc)$_2$ (0.05 eq., 1.1 mg), Ph-B(OH)$_2$ (1.5 eq., 18.3 mg), K$_2$CO$_3$ (3 eq., 41.4 mg) and PEG$_{3400}$ (400 mg) was heated under microwave irradiation at 100°C. After 1h a full conversion of substrate was observed. The mixture was cooled down, dissolved in a small amount of CH$_2$Cl$_2$ and cooled for 4h at -18°C for a complete precipitation of PEG. After filtration the crude product was purified by column chromatography (cyclohexane/AcOEt = 8/2 v/v) to afford 26.9 mg (71%) of pure product 4e.

\[
\text{NMR (CDCl}_3, 100 MHz), \delta (ppm): 196.3, 172.2, 151.5, 149.4, 134.5, 129.7, 128.0, 127.2, 119.0, 110.3, 82.8, 77.5, 66.0, 40.1, 38.0, 27.9; \
\text{ESI-MS } m/z \ 519.0 \ (M+H)^+; \
\text{HMRS (ESI) calcd. for C}_{24}H_{28}NO_3I (M+H)^+ : 519.1145, found: 519.1158; HPLC Chiralcel OD-RH, ACN / H$_2$O (+0.01% TFA) = 60/40, flow rate 1.0 mL / min, } \lambda = 214 \text{ nm}, \
\text{t}_{\text{major}} = 6.300 \text{ min, } \text{t}_{\text{minor}} = 5.917 \text{ min.}
\]

Pyrrolin-4-one (5e). A mixture of β-iodopyrrolin-4-one 3e (1 eq., 24 mg), PdCl$_2$(PPh$_3$)$_3$ (0.02 eq., 0.8 mg), methyl methacrylate (5 eq., 30 mg), TEA (3 eq., 18.2 mg) and PEG$_{3400}$ (400 mg) was
heated under microwave irradiation at 100°C. After 30 min. a full conversion of substrate was observed. The mixture was cooled down, dissolved in a small amount of CH₂Cl₂ and cooled for 4h at -18°C for a complete precipitation of PEG. After filtration the crude product was purified by column chromatography (cyclohexane/AcOEt = 8/2 v/v) to afford 13.6 mg (61%) of pure product 5e.

\[\text{1H NMR (CDCl}_3, 400 MHz), \delta (ppm): 7.46-7.43 (m, 3H), 7.36-7.27 (m, 2H), 6.77 (q, J = 1.3 Hz, 1H), 4.24 (d, J = 3.5 Hz, 1H), 3.69 (s, 3H), 2.66 (m, 1H), 1.87 (d, J = 1.3 Hz, 3H), 1.22 (s, 9H), 1.20 (d, J = 7.0 Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H); }^{13}\text{C NMR (CDCl}_3, 100 MHz), \delta (ppm): 197.3, 169.7, 168.4, 150.2, 132.5, 131.4, 130.3, 128.1, 127.7, 120.7, 83.1, 70.5, 51.9, 32.3, 27.6, 17.2, 17.0, 15.9; ESI-MS m/z 400.1 (M+H)^+, 422.1 (M+Na)^+, 344.1 (M+H-t-Bu)^+, 300.2 (M+H-Boc)^+; HMRS (ESI) calcd. for C_{23}H_{30}NO_5 (M+H)^+: 400.2124, found: 400.2113.}
VI. Spectral data.

1H and 13C NMR of compound Boc-Ala-NCA
1H and 13C NMR of compound Boc-Val-NCA
1H and 13C NMR of compound Boc-Phe-NCA
^{1}H and ^{13}C NMR of compound 2a
1H and 13C NMR of compound 2b
1H and 13C NMR of compound 2c
1H and 13C NMR of compound 2d
1H and 13C NMR of compound 2e
1H and 13C NMR of compound 2f
1H and 13C NMR of compound 2g
1H and 13C NMR of compound 2h
1H and 13C NMR of compound 2i
1H and 13C NMR of compound 3b.
1H and 13C NMR of compound 3c.
1H and 13C NMR of compound 3d.
1H and 13C NMR of compound 3e.
1H and 13C NMR of compound 3f.
1H and 13C NMR of compound 3g.
1H and 13C NMR of compound 3i.
1H and 13C NMR of compound 4e.
1H and 13C NMR of compound 5e.