Highly Enantioselective hydrosilylation of N-(1,2-diarylethylidene) arylamines

Yongsheng Zheng,a,b Zhouyang Xue,a,b Lixin Liu,a,b Chang Shu,a,b Weicheng Yuan,a and Xiaomei Zhang*a

a Key Laboratory for Asymmetric Synthesis and Chiral technology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
Fax +86(28)85257883; E-mail: xmzhang@cioc.ac.cn

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China

Supporting Information
Table of Contents

1. General Methods .. S2
2. Synthesis and characterization of chiral Lewis base catalysts 1a-1h S2
3. General procedure for the preparation of N-(1,2-diphenylethylidene)-4-methoxyanilines 2a-2s ... S3
4. General Procedure for the asymmetric hydrosilylation of N-(1,2-diphenylethylidene) -4-methoxyanilines 2a-2s ... S7
5. Synthesis of (S)-4-amino-N-(1-(4-chlorophenyl)-2-phenylethyl)-1-(7H-pyrrolo[2,3-d] pyrimidin-4-yl)piperidine-4-carboxamide (7) ... S14
6. The copies of 1H NMR, 13C NMR spectra ... S17
7. The copies of HPLC spectra .. S57
1. General Methods.

All starting materials were of the highest commercially available grade and used without further purification. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Flash chromatography (FC) was performed using silica gel HG/T2354-92. 1H and 13C NMR (300 and 75 MHz, respectively) spectra were recorded in CDCl$_3$. 1H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl$_3$, δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. 13C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl$_3$, δ 77.0 ppm). ESI HRMS spectra were recorded on BioTOF Q. HPLC analysis was performed on Waters-Breeze (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak AD and OJ columns were purchased from Daicel Chemical Industries (Hong Kong, China). Chiralpak OD column (Sino-chiral® OD) was purchased from Funsea Technology Inc. (Beijing, China). Optical rotations were measured on a Perkin-Elmer 341 Polarimeter at $\lambda=589$ nm (c g/100 mL). All enantiomeric ratios have been controlled by coinjections of the pure sample with the racemic substrates.

2. Synthesis and characterization of chiral Lewis base catalysts 1a-1h

Chiral Lewis base catalyst 1a was synthesized according to the literature procedure.1 Catalyst 1b was synthesized according to the literature procedure.2 Catalysts 1c-1h were synthesized according to the literature procedure.3

![Chemical Structure](image)

(3R,5S)-5-(hydroxydi(p-phenyl)phenylmethyl)-1-picolinoyl-pyrrolidin-3-yl pivalate (1h): White solid. 1H NMR (CDCl$_3$, 300 MHz): δ 1.13 (s, 9H), 2.34 (br s, 1H), 2.56 (br s, 1H), 3.22 (br s, 1H), 3.82 (br s, 1H), 4.98 (br s, 1H), 5.79 (br s, 1H), 6.18 (br s, 1H), 7.26-7.63 (m, 22H). 8.47 (br s, 1H). 13C NMR (75 MHz, CDCl$_3$): δ 26.9, 35.6, 38.5, 56.3, 64.8, 124.8, 126.5, 126.6, 126.9, 127.0, 127.2, 127.3, 127.6, 127.8, 128.7, 136.7, 139.9, 140.1, 140.4, 140.5, 143.9, 153.3, 177.9. \([\alpha]_D^{20}=+2.9\) (c 1.01 CHCl$_3$). HRMS (ESI) Calcd. For C$_{40}$H$_{38}$N$_2$NaO$_4$ [M+Na]$^+$: 633.2723; Found: 633.2724.
3. General procedure for the preparation of N-(1,2-diphenylethylidene)-4-methoxyanilines 2a-2s

1,2-diarylethanones 8a-8s were prepared according to the literature procedure.4 N-(1,2-diphenylethylidene)-4-methoxyanilines 2a-2s were synthesized from 8a-8s according to literature methods.5

\[
\begin{align*}
\text{4-Methoxyaniline (27 mmol) and Et}_3\text{N (27 mmol) were dissolved in CH}_2\text{Cl}_2 (60 mL) in the atmosphere of N}_2. \text{ The mixture was cooled by an ice-salt bath. A solution of TiCl}_4 (1.0 mL, 9 mmol) was introduced via syringe to the rapidly stirred mixture. After stirring for 30 min, the ice bath was removed, and stirring continued until the mixture reached room-temperature. Then 1,2-diarylethanone (9 mmol) in CH}_2\text{Cl}_2 (30 mL) was added via syringe. The temperature of the solution was raised to 40}^\circ\text{C and stirring was continued for 5 h. The solvent was evaporated and the residue was subjected to chromatography and subsequent recrystalization to afford 2a-2s.}
\end{align*}
\]

N-(1,2-diphenylethylidene)-4-methoxyaniline (2a): Yellow solid, \(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta 3.79 \text{ (s, 3H), 4.12 (s, 2H), 6.78-6.80 (m, 2H), 6.86-6.89 (m, 2H), 7.08-7.10 (m, 2H), 7.13-7.28 (m, 3H), 7.33-7.40 (m, 3H), 7.91-7.94 (m, 2H).}

4-methoxy-N-(1-(4-methoxyphenyl)-2-phenylethylidene)aniline (2b): Yellow solid, \(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta 3.79 \text{ (s, 3H), 3.82 (s, 3H), 4.09 (s, 2H), 6.78 (dd, } J = 2.1 \text{ Hz, } J = 6.6 \text{ Hz, 2H), 6.79-6.88 (m, 4H), 7.09 (d, } J = 6.9 \text{ Hz, 2H), 7.16-7.26 (m, 3H), 7.89 (d, } J = 9.0 \text{ Hz, 2H).}

4-methoxy-N-(2-phenyl-1-p-tolylethylidene)aniline (2c): Yellow solid, \(^1\text{H NMR (300 MHz, CDCl}_3\): \(\delta 2.37 \text{ (s, 3H), 3.79 (s, 3H), 4.12 (s, 2H), 6.81 (d, } J = 8.7 \text{ Hz, 2H), 6.88 (d, } J = 8.7 \text{ Hz, 2H), 7.11 (d, } J = 7.2 \text{ Hz, 2H), 7.17-7.26}

(m, 5H), 7.85 (d, J = 8.1 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.3, 35.9, 55.4, 113.7, 114.2, 120.4, 122.2, 126.1, 127.9, 128.1, 128.3, 128.4, 128.6, 129.0, 129.2, 135.8, 137.5, 140.4, 144.3, 155.9, 166.2.

N-(1-(4-chlorophenyl)-2-phenylethylidene)-4-methoxyaniline (2d): Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.79 (s, 3H), 4.10 (s, 2H), 6.78-6.81 (s, m, 2H), 6.86-6.92 (m, 2H), 7.07 (d, J = 6.9 Hz, 2H), 7.14-7.24 (m, 3H), 7.29-7.35 (m, 2H), 7.82-7.87 (m, 2H).

N-(1-(4-bromophenyl)-2-phenylethylidene)-4-methoxyaniline (2e): Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.79 (s, 3H), 4.40 (s, 2H), 6.78-6.81 (m, 2H), 6.86-6.89 (m, 2H), 7.07 (d, J = 6.9 Hz, 2H), 7.17-7.46 (m, 3H), 7.48 (d, J = 8.7 Hz, 2H), 7.79 (d, J = 8.7 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 35.8, 55.4, 133.8, 114.3, 120.3, 124.8, 126.4, 128.2, 128.7, 129.6, 131.2, 131.5, 136.9, 137.3, 143.8, 156.2, 165.3.

N-(1-(3,4-dimethylphenyl)-2-phenylethylidene)-4-methoxyaniline (2f): Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.28 (s, 3H), 2.29 (s, 3H), 3.79 (s, 3H), 4.12 (s, 2H), 6.79-6.82 (m, 2H), 6.87-6.90 (m, 2H), 7.11-7.16 (m, 3H), 7.19-7.24 (m, 3H), 7.59 (dd, J = 7.8 Hz, J = 1.5 Hz, 1H), 7.84 (s, 1H). 13C NMR (75 MHz, CDCl$_3$): δ 19.7, 19.8, 35.8, 55.3, 114.1, 120.4, 125.6, 126.1, 128.3, 128.5, 128.9, 129.5, 136.1, 136.6, 137.5, 139.2, 144.4, 155.9, 166.5.

4-methoxy-N-(2-phenyl-1-(3,4,5-trimethylphenyl)ethylidene)aniline (2g): Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.19 (s, 3H), 2.30 (s, 6H), 3.79 (s, 3H), 4.11 (s, 2H), 6.78 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 7.10-7.18 (m, 3H), 7.22 (d, J = 7.5 Hz, 2H), 7.60 (s, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 15.5, 20.7, 35.8, 55.3, 114.1, 120.4, 126.0, 127.0, 128.3, 128.5, 135.4, 136.3, 137.6, 137.8, 144.5, 155.8, 166.8.

4-methoxy-N-(2-phenyl-1-(thiophen-2-yl)ethylidene)aniline (2h): Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.78 (s, 3H), 4.09 (s, 2H), 6.79-6.84 (m, 4H),
6.98-6.99 (m, 1H), 7.15 (d, J = 7.2 Hz, 2H), 7.19-7.29 (m, 3H), 7.39 (d, J = 7.2 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 36.5, 55.4, 114.1, 121.0, 126.4, 127.5, 128.2, 128.5, 128.6, 129.4, 129.6, 137.2, 143.1, 145.8, 156.2, 161.3.

N-(1-(furan-2-yl)-2-phenylethylidene)-4-methoxyaniline (2i): Yellow solid. 1H NMR (300 MHz, CDCl$_3$): δ 3.78 (s, 3H), 3.99 (s, 2H), 6.43-6.45 (m, 1H), 6.44-6.81 (m, 5H), 7.10 (d, J = 6.9 Hz, 2H), 7.17-7.24 (m, 3H), 7.52 (s, 1H).

N-(2-(biphenyl-4-yl)-1-phenylethylidene)-4-methoxyaniline (2j): Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.82 (s, 3H), 4.20 (s, 2H), 6.68-6.94 (m, 4H), 7.20 (d, J = 7.8 Hz, 2H), 7.35-7.62 (m, 14H), 7.98-7.99 (m, 2H).

N-(2-(4-fluorophenyl)-1-phenylethylidene)-4-methoxyaniline (2k): Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.81 (s, 3H), 4.10 (s, 2H), 6.77-6.81 (m, 2H), 6.89 (d, J = 2.7 Hz, 2H), 6.91 (d, J = 2.7 Hz, 2H), 7.05 (d, J = 3.0 Hz, 2H), 7.39-7.41 (m, 3H), 7.91-7.94 (m, 2H).

N-(2-(2-chlorophenyl)-1-phenylethylidene)-4-methoxyaniline (2l): Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.78 (s, 3H), 4.24 (s, 2H), 6.84-6.92 (m, 4H), 7.14-7.13 (m, 3H), 7.36-7.40 (m, 4H), 7.94-7.96 (m, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 33.6, 55.2, 113.6, 113.9, 114.2, 120.2, 121.3, 121.9, 126.8, 127.4, 127.6, 127.7, 128.1, 128.2, 128.4, 128.5, 129.3, 129.6, 130.2, 133.5, 135.1, 138.0, 143.9, 156.1, 165.6.

4-methoxy-N-(1-p-tolyl-2-(2,4,5-trifluorophenyl)ethylidene)aniline (2m): Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.37 (s, 3H), 3.80 (s, 3H), 4.04 (s, 2H), 6.75-6.91 (m, 6H), 7.20 (d, J = 8.1 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.2, 21.3, 28.0, 55.2, 55.4, 105.4 (dd, J = 83.1 Hz, J = 63.7 Hz), 113.4, 114.3, 114.4, 117.6 (dd, J = 21.0 Hz, J = 78.4 Hz, 1C), 119.0, 120.2, 122.1, 127.4, 127.6, 127.9, 128.9, 129.2, 135.0, 140.9, 143.9, 156.2, 164.7.
4-methoxy-N-(2-(naphthalen-2-yl)-1-p-tolylethylidene) aniline (2n):
Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.36 (s, 3H), 3.79 (s, 3H), 4.29 (s, 2H), 6.88 (s, 4H), 7.18 (d, $J = 8.1$ Hz, 2H), 7.25-7.28 (m, 1H), 7.43-7.46 (m, 2H), 7.56 (s, 1H), 7.72-7.81 (m, 3H), 7.92 (d, $J = 8.1$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.3, 36.1, 55.4, 113.8, 114.2, 120.5, 122.3, 125.5, 125.9, 126.0, 126.7, 126.8, 127.5, 127.8, 127.9, 128.1, 128.2, 128.6, 129.1, 131.9, 133.5, 135.1, 135.8, 140.4, 144.4, 156.0, 166.1.

N-(2-(4-bromophenyl)-1-p-tolylethylidene)-4-methoxyaniline (2o):
Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.37 (s, 3H), 3.79 (s, 3H), 4.04 (s, 2H), 6.76 (d, $J = 8.7$ Hz, 2H), 6.86-6.89 (m, 2H), 6.96 (d, $J = 8.4$ Hz, 2H), 7.18 (d, $J = 8.1$ Hz, 2H), 7.34 (d, $J = 8.4$ Hz, 2H), 7.81 (d, $J = 8.1$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.3, 35.3, 55.2, 55.4, 113.8, 114.3, 120.1, 120.3, 122.2, 127.9, 128.0, 128.7, 129.1, 130.0, 130.9, 131.5, 131.6, 135.5, 140.7, 144.2, 156.1, 165.7.

4-methoxy-N-(2-(4-methoxyphenyl)-1-p-tolylethylidene)aniline (2p):
Light yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 2.36 (s, 3H), 3.74 (s, 3H), 3.79 (s, 3H), 4.03 (s, 2H), 6.75-6.79 (m, 4H), 6.85-6.88 (m, 2H), 7.00 (d, $J = 8.7$ Hz, 2H), 7.17 (d, $J = 8.1$ Hz, 2H), 7.83 (d, $J = 8.1$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.3, 35.0, 55.1, 55.4, 113.7, 113.9, 114.0, 114.2, 120.5, 122.3, 127.9, 128.1, 128.6, 129.0, 129.3, 129.4, 130.2, 135.9, 140.4, 144.4, 155.9, 157.9, 166.6.

N-(1-(4-bromophenyl)-2-(4-chlorophenyl)ethylidene)-4-methoxyaniline (2q):
Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.79 (s, 3H), 4.05 (s, 2H), 6.74-6.77 (m, 2H), 6.86-6.89 (m, 2H), 6.98 (d, $J = 8.4$ Hz, 2H), 7.20 (d, $J = 8.4$ Hz, 2H), 7.49 (d, $J = 8.7$ Hz, 2H), 7.76 (d, $J = 8.4$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 35.1, 55.4, 113.9, 114.4, 120.3, 122.1, 125.0, 128.7, 128.9, 129.5, 129.6, 130.5, 131.3, 131.6, 132.3, 135.4, 137.1, 143.7, 156.3, 164.8.

N-(1,2-bis(4-bromophenyl)ethylidene)-4-methoxyaniline (2r):
Yellow solid, 1H NMR (300 MHz, CDCl$_3$): δ 3.79 (s, 3H), 4.03 (s, 2H), 6.75 (d, J
= 8.7 Hz, 2H), 6.88 (d, \(J = 8.7 \) Hz, 2H), 6.93 (d, \(J = 8.4 \) Hz, 2H), 7.35 (d, \(J = 8.4 \) Hz, 2H), 7.49 (d, \(J = 8.7 \) Hz, 2H), 7.76 (d, \(J = 8.4 \) Hz, 2H).

N-(2-(4-chlorophenyl)-1-p-tolylethylidene)-4-methoxyaniline (2s):

Light yellow solid, \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \), 2.37 (s, 3H), 3.80 (s, 3H), 4.07 (s, 2H), 6.77 (d, \(J = 8.4 \) Hz, 2H), 6.87-6.89 (m, 2H), 7.02 (d, \(J = 8.4 \) Hz, 2H), 7.18-7.21 (m, 4H), 7.82 (d, \(J = 8.1 \) Hz, 2H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 21.3, 35.2, 55.4, 113.7, 144.2, 120.3, 122.2, 127.9, 128.5, 128.7, 129.1, 129.6, 135.5, 135.9, 140.6, 144.2, 156.0, 165.8.

4. General procedure for the catalytic asymmetric hydrosilylation of N-(1,2-diphenylethylidene)-methoxyanilines 2a-2s

A solution of trichlorosilane (41 µL, 0.4 mmol, 2.0 equiv.) in 120 µL of CH\(_2\)Cl\(_2\) was added to a stirred solution of the corresponding N-(1,2-diarylethylidene)-methoxyaniline (0.2 mmol) and the catalyst (0.02 mmol) in CH\(_2\)Cl\(_2\) (3 mL) at -10 °C. The mixture was stirred at the same temperature until the reaction was completed. Then the reaction was quenched with a saturated aqueous solution of NaHCO\(_3\) and extracted with EtOAc. The combined extracts was washed with brine and dried over anhydrous Na\(_2\)SO\(_4\) and the solvents were evaporated. Purification by column chromatography (silica gel, Petroleum ether/ Ethyl acetate = 20:1) afforded the pure product. The e.e. values were determined using established HPLC techniques with chiral stationary phases.

Racemates: All of the racemic products were prepared by using DMF (0.1equiv.) as a catalyst and trichlorosilane as hydrosilylation reagent and their chiral HPLC retention time data were compared just prior to authentic samples with enantiomeric excess.

N-(1,2-diphenylethyl)-4-methoxyaniline (3a): Liquid, yield 99%, 98% ee, \([\alpha]_D^{20} = +57\) (c = 0.23, CHCl\(_3\)). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 3.18 (dd, \(J = 8.1 \) Hz, \(J = 13.8 \) Hz, 1H), 3.29 (dd, \(J = 5.7 \) Hz, \(J = 13.8 \) Hz, 1H), 3.80 (s, 3H), 4.03-4.07 (br s, 1H), 4.2 (dd, \(J = 5.7 \) Hz, \(J = 8.1 \) Hz, 1H), 6.62 (d, \(J = 6.6 \) Hz, \(J = 2.1 \) Hz, 2H), 6.84 (d, \(J = 6.7 \) Hz, \(J = 2.1 \) Hz, 2H), 7.29-7.31 (m, 2H), 7.38-7.50 (m, 8H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 45.0, 55.4, 59.9, 114.5, 114.7, 126.3, 126.5, 126.8, 128.3, 128.4, 128.5, 129.0, 137.7, 141.4, 143.5, 151.9. HRMS (ESI) Calcd. For C\(_{21}\)H\(_{22}\)NO [M+H]**: 304.1696; Found: 304.1691. HPLC
conditions: Chiralcel AD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, \(t_{\text{major}} = 6.41 \) min, \(t_{\text{minor}} = 5.93 \) min.

4-methoxy-N-(1-(4-methoxyphenyl)-2-phenylethyl)aniline (3b): Liquid, yield 97%, 97% ee, \([\alpha]_D^{20} = +34.1 (c 1.695 \text{ CHCl}_3)\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 2.97-3.04 (m, 1H), 3.10-3.14 (m, 1H), 3.69 (s, 3H), 3.81 (s, 3H), 3.87 (br s, 1H), 4.47-4.51 (m, 1H), 6.45 (d, \(J = 8.7 \) Hz, 2H), 6.68 (d, \(J = 8.7 \) Hz, 2H), 6.87 (d, \(J = 8.4 \) Hz, 2H), 7.15 (d, \(J = 6.6 \) Hz, 2H), 7.25-7.32 (m, 5H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 45.3, 55.2, 55.6, 59.4, 113.8, 114.5, 114.9, 126.6, 127.5, 128.4, 129.2, 135.6, 137.9, 141.5, 151.9, 158.5. HRMS (ESI) Calcd. For C\(_{22}\)H\(_{24}\)NO\(_2\) [M+H]+: 334.1802; Found: 334.1792. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, \(t_{\text{major}} = 8.87 \) min, \(t_{\text{minor}} = 7.42 \) min.

4-methoxy-N-(2-phenyl-1-p-tolylethyl)aniline (3c): White solid, yield 99%, 96% ee, \([\alpha]_D^{20} = +39.8 (c = 1.29, \text{ CHCl}_3)\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 2.36 (s, 3H), 2.99 (dd, \(J = 13.8 \) Hz, \(J = 8.4 \) Hz, 1H), 3.14 (dd, \(J = 13.8 \) Hz, \(J = 5.4 \) Hz, 1H), 3.68 (s, 3H), 3.85 (br s, 1H), 4.51 (dd, \(J = 8.4 \) Hz, \(J = 5.4 \) Hz, 1H), 6.44 (d, \(J = 8.7 \) Hz, 2H), 6.65-6.69 (m, 2H), 7.13-7.19 (m, 4H), 7.24-7.33 (m, 5H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 21.1, 45.3, 55.6, 59.7, 114.5, 114.8, 126.3, 128.5, 129.1, 136.5, 137.9, 140.6, 141.6, 151.9. HRMS (ESI) Calcd. For C\(_{22}\)H\(_{23}\)NO [M+H]+: 318.1852; Found: 318.1849. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, \(t_{\text{major}} = 7.42 \) min, \(t_{\text{minor}} = 5.89 \) min.

N-(1-(4-chlorophenyl)-2-phenylethyl)-4-methoxyaniline (3d): Liquid, yield 99%, 97% ee, \([\alpha]_D^{20} = +44.6 (c = 1.11, \text{ CHCl}_3)\). \(^1\)H NMR (300 MHz, CDCl\(_3\)): \(\delta \) 3.01 (dd, \(J = 13.8 \) Hz, \(J = 8.1 \) Hz, 1H), 3.10 (dd, \(J = 13.8 \) Hz, \(J = 5.7 \) Hz, 1H), 3.70 (s, 3H), 3.85 (br s, 1H), 4.51 (dd, \(J = 8.1 \) Hz, \(J = 5.7 \) Hz, 1H), 6.42 (d, \(J = 8.7 \) Hz, 2H), 6.66-6.70 (m, 2H), 7.13-7.15 (m, 2H), 7.24-7.35 (m, 7H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)): \(\delta \) 45.1, 55.6, 59.4, 114.6, 114.9, 126.8, 127.9, 128.6, 128.6, 129.2, 132.5, 137.3, 141.1, 142.2, 152.1. HRMS (ESI) Calcd. For C\(_{21}\)H\(_{20}\)ClNNaO [M+Na]+: 360.1126; Found: 360.1121. HPLC conditions:
Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{\text{r, major}} = 8.47$ min, $t_{\text{r, minor}} = 6.19$ min.

N-(1-(4-bromophenyl)-2-phenylethyl)-4-methoxyaniline (3e): Liquid, yield 97%, 96% ee, α\textsubscript{D}20 = +34.1 (c = 1.51, CHCl\textsubscript{3}). 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 2.98 (dd, $J = 13.8$ Hz, $J = 8.1$ Hz, 1H), 3.09 (dd, $J = 13.8$ Hz, $J = 5.7$ Hz, 1H), 3.69 (s, 3H), 3.89 (br s, 1H), 4.46-4.50 (m, 1H), 6.40 (d, $J = 12.9$, 2H), 6.66-6.69 (d, $J = 8.7$, 2H), 7.13 (d, $J = 7.5$, 2H), 7.20-7.33 (m, 5H), 7.44 (d, $J = 8.4$ Hz, 2H). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 45.1, 55.6, 59.4, 114.5, 114.8, 120.6, 126.8, 128.2, 128.6, 129.1, 131.6, 137.2, 141.0, 142.7, 152.1. HRMS (ESI) Calcd. For C\textsubscript{21}H\textsubscript{20}BrNNaO [M+Na]+: 404.0620; Found: 404.0610.

HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{\text{r, major}} = 13.48$ min, $t_{\text{r, minor}} = 8.29$ min.

N-(1-(3,4-dimethylphenyl)-2-phenylethyl)-4-methoxyaniline (3f): White solid, yield 99%, 97% ee, α\textsubscript{D}20 = +34.7 (c = 1.282, CHCl\textsubscript{3}). 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 2.29 (s, 6H), 2.99 (dd, $J = 13.8$ Hz, $J = 8.7$ Hz, 1H), 3.17 (dd, $J = 13.8$ Hz, $J = 5.1$ Hz, 1H), 3.71 (s, 3H), 3.88 (br s, 1H), 4.50 (dd, $J = 8.7$ Hz, $J = 5.1$ Hz, 1H), 6.48 (d, $J = 8.7$ Hz, 2H), 6.71 (d, $J = 8.7$ Hz, 2H), 7.13-7.23 (m, 5H), 7.26-7.36 (m, 3H). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 19.4, 19.9, 45.3, 55.6, 59.7, 114.5, 114.8, 123.7, 126.5, 127.6, 128.5, 129.1, 129.7, 135.1, 136.6, 138.0, 141.2, 141.7, 151.9. HRMS (ESI) Calcd. For C\textsubscript{23}H\textsubscript{26}NO [M+H]+: 332.2009; Found: 332.2008.

HPLC conditions: Chiralpak OJ-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{\text{r, major}} = 11.49$ min, $t_{\text{r, minor}} = 9.79$ min.

4-methoxy-N-(2-phenyl-1-(3,4,5-trimethylphenyl)ethyl)aniline (3g): White solid, yield 99%, 96% ee, α\textsubscript{D}20 = +31.2 (c = 1.39, CHCl\textsubscript{3}). 1H NMR (300 MHz, CDCl\textsubscript{3}): δ 2.21 (s, 3H), 2.33 (s, 6H), 2.97 (dd, $J = 14.1$ Hz, $J = 9.3$ Hz, 1H), 3.19 (dd, $J = 14.1$ Hz, $J = 4.8$ Hz, 1H), 3.72 (s, 3H), 3.91 (br s, 1H), 4.46 (dd, $J = 9.3$ Hz, $J = 4.8$ Hz, 1H), 6.49 (d, $J = 8.7$ Hz, 2H), 6.71 (d, $J = 8.7$ Hz, 2H), 7.08 (s, 2H), 7.24-7.38 (m, 5H). 13C NMR (75 MHz, CDCl\textsubscript{3}): δ 15.1, 20.7, 45.4, 55.6,
59.8, 114.5, 114.8, 125.5, 126.5, 128.5, 129.0, 133.6, 136.5, 138.2, 140.7, 141.9, 151.8. HRMS (ESI) Calcd. For C_{24}H_{28}NO [M+H]^+: 346.2165; Found: 346.2163. HPLC conditions: Chiralpak OJ-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_r^{major} = 9.24$ min, $t_r^{minor} = 8.32$ min.

4-methoxy-N-(2-phenyl-1-(thiophen-2-yl)ethyl)aniline (3h): Liquid, yield 97%, 93% ee, $[\alpha]_{D}^{20} = +33.7$ (c = 1.39, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$):
- δ 3.18 (d, $J = 6.84$ Hz, 2H), 3.70 (s, 3H), 3.89 (br s, 1H), 4.80-4.85 (m, 1H), 6.54 (d, $J = 8.7$ Hz, 2H), 6.71 (d, $J = 8.7$ Hz, 2H), 6.86 (d, $J = 3.3$Hz, 1H), 6.91-6.94 (m, 1H), 7.15-7.19 (m, 3H), 7.24-7.32 (m, 3H). 13C NMR (75 MHz, CDCl$_3$):
- δ 45.3, 55.6, 56.4, 114.6, 115.2, 123.7, 123.8, 126.7, 126.8, 128.5, 129.2, 137.4, 141.1, 148.9, 152.4. HRMS (ESI) Calcd. For C$_{19}$H$_{20}$NOS [M+H]$^+$: 310.1260; Found: 310.1250. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_r^{major} = 9.98$ min, $t_r^{minor} = 7.29$ min.

N-(1-(furan-2-yl)-2-phenylethyl)-4-methoxyaniline (3i): Black liquid, yield 97%, 69% ee, $[\alpha]_{D}^{20} = -20.2$ (c = 1.16, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$):
- δ 3.20 (d, $J = 6.6$ Hz, 2H), 3.5 (br s, 1H), 3.73 (s, 3H), 4.66-4.71 (m, 1H), 6.04 (d, $J = 3.3$ Hz, 1H), 6.26-6.27 (m, 1H), 6.56-6.59 (m, 2H), 6.75 (d, $J = 8.7$ Hz, 2H), 7.06-7.09 (m, 2H), 7.24-7.27 (m, 3H), 7.39 (dd, $J = 1.8$ Hz, $J = 0.6$ Hz, 1H). 13C NMR (75 MHz, CDCl$_3$):
- δ 40.9, 54.2, 55.6, 106.7, 110.2, 114.7, 115.3, 126.6, 128.3, 129.2, 137.4, 140.9, 141.3, 152.5, 155.4. HRMS (ESI) Calcd. For C$_{19}$H$_{20}$NO$_2$ [M+H]$^+$: 294.1489; Found: 294.1493. HPLC conditions: Chiralcel AD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_r^{major} = 7.52$ min, $t_r^{minor} = 6.46$ min.

N-(2-(biphenyl-4-yl)-1-phenylethyl)-4-methoxyaniline (3j): Liquid, yield 95%, 98% ee, $[\alpha]_{D}^{20} = +58.3$ (c = 1.44, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$):
- δ 3.07 (dd, $J = 13.8$ Hz, $J = 8.1$ Hz, 1H), 3.19 (dd, $J = 13.8$, $J = 5.4$ Hz, 1H), 3.70 (s, 3H), 3.79 (br s, 1H), 4.59 (dd, $J = 8.1$ Hz, $J = 5.4$ Hz, 1H), 6.47 (d, $J = 8.7$ Hz, 2H), 6.69 (d, $J = 8.7$ Hz, 2H), 7.22-7.26 (m, 3H), 7.32-7.40(m, 5H), 7.44-7.48 (m, 2H) 7.54 (d, $J = 8.1$ Hz, 2H),7.61 (d, $J = 7.2$ Hz, 2H). 13C NMR (75 MHz,
CDCl$_3$): δ 44.8, 55.6, 59.9, 114.6, 114.9, 126.5, 126.9, 127.0, 127.2, 128.6, 128.7, 129.6, 136.9, 139.5, 140.7, 141.5, 143.6, 152.1. HRMS (ESI) Calcd. For C$_{27}$H$_{25}$NNaO [M+Na]$^+$: 402.1828; Found: 402.1833.

HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 17.85$ min, $t_{r_{minor}} = 54.55$ min.

N-(2-(4-fluorophenyl)-1-phenylethyl)-4-methoxyaniline (3k): Liquid, yield 95%, 98% ee, $[\alpha]_D^{20} = +41.2$ (c = 1.22, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.98-3.13 (m, 2H), 3.69 (s, 3H), 3.86 (brs, 1H), 4.48-4.52 (m, 1H), 6.44-6.47 (m, 2H), 6.67-6.70 (m, 2H), 6.93-6.99 (m, 2H), 7.04-7.09 (m, 2H), 7.26-7.32 (m, 5H). 13C NMR (75 MHz, CDCl$_3$): δ 44.2, 55.6, 60.1, 114.6, 114.8, 115.2 (d, $J = 21.1$ Hz, 2C), 126.4, 126.7, 128.5, 130.6 (d, $J = 7.8$ Hz, 2C), 133.3 (d, $J = 3.3$ Hz, 1C), 141.3, 143.2, 152.0, 161.6 (d, $J = 243.7$ Hz, 1C). HRMS (ESI) Calcd. For C$_{21}$H$_{21}$FNO [M+H]$^+$: 322.1602; Found: 322.1606. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane 20:80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 11.60$ min, $t_{r_{minor}} = 6.64$ min.

N-(2-(2-chlorophenyl)-1-phenylethyl)-4-methoxyaniline (3l): Liquid, yield 98%, 95% ee, $[\alpha]_D^{20} = + 44$ (c = 1.32, CHCl$_3$). 1H NMR (CDCl$_3$, 300 MHz): δ 3.19 (d, $J = 7.2$ Hz, 2H), 3.70 (s, 3H), 4.10 (brs, 1H), 4.63-4.67 (m, 1H), 6.46 (d, $J = 8.7$ Hz, 2H), 6.67 (d, $J = 8.7$ Hz, 2H), 7.12-7.19 (m, 3H), 7.25-7.40 (m, 6H). 13C NMR (75 MHz, CDCl$_3$): δ 42.9, 55.7, 58.8, 114.7, 114.8, 126.3, 126.7, 127.1, 128.1, 128.6, 129.7, 131.3, 134.3, 135.9, 141.4, 143.6, 152.0. HRMS (ESI) Calcd. For C$_{21}$H$_{20}$ClNNaO [M+Na]$^+$: 360.1126; Found: 360.1134. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane 20:80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 6.65$ min, $t_{r_{minor}} = 4.86$ min.

4-methoxy-N-(1-p-tolyl-2-(2,4,5-trifluorophenyl)ethyl)aniline (3m): Liquid, yield 87%, 98% ee, $[\alpha]_D^{20} = +16.3$ (c = 1.48, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.23 (s, 3H), 2.93-2.99 (m, 1H), 3.06-3.13 (m, 1H), 3.45 (brs, 1H), 3.69 (s, 3H), 4.46-4.51 (m, 1H), 6.48 (d, $J = 8.7$ Hz, 2H), 6.69 (d, $J = 8.7$ Hz, 2H), 6.79-6.94 (m, 2H), 7.12 (d, $J = 7.8$ Hz, 2H), 7.18 (d, $J = 8.1$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.0, 37.4, 55.5, 58.9, 105.2 (dd, $J = 20.6$ Hz, $J = 28.7$ Hz, 1C), 114.7, 114.8, 118.8
(dd, $J = 6.1$ Hz, $J = 18.8$ Hz, 1C), 121.7 (m, 1C), 126.2, 129.3, 136.9, 139.6, 141.1, 146.5 (octet, $J = 243.0$ Hz, $J = 12.2$ Hz, $J = 3.6$ Hz, 1C), 148.7 (octet, $J = 248.4$ Hz, $J = 12.5$ Hz, $J = 3.4$ Hz, 1C), 152.2, 156.2 (octet, $J = 241.8$ Hz, $J = 11.8$ Hz, $J = 2.5$ Hz, 1C). HRMS (ESI) Calcd. For C$_{22}$H$_{20}$F$_3$NNaO $[M+Na]^+$: 394.1389; Found: 394.1400. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane 20:80, flow rate 1.0 mL/min, UV detection at 254 nm, t_rmajor = 7.34 min, t_rminor = 5.63 min

4-methoxy-N-(2-(naphthalen-2-yl)-1-p-tolylethyl)aniline (3n):
Liquid, yield 92%, 97% ee, $[\alpha]_{D}^{20} = +80$ (c = 1.36, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.38 (s, 3H), 3.18 (dd, $J = 13.8$ Hz, $J = 8.4$ Hz, 1H), 3.32 (dd, $J = 13.8$ Hz, $J = 5.4$ Hz, 1H), 3.69 (s, 3H), 3.93 (brs, 1H), 4.65 (dd, $J = 8.4$ Hz, $J = 5.4$ Hz), 6.46 (d, $J = 8.7$ Hz, 2H), 6.68 (d, $J = 8.7$ Hz, 2H), 7.17 (d, $J = 7.8$ Hz, 2H), 7.26-7.31 (m, 3H), 7.46-7.53 (m, 2H), 7.65 (s, 1H), 7.77-7.86 (m, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 21.0, 45.4, 55.6, 59.6, 114.6, 114.9, 125.5, 126.0, 126.4, 127.4, 127.5, 127.6, 128.1, 129.3, 132.3, 133.4, 135.5, 136.5, 140.7, 141.6, 152.0. HRMS (ESI) Calcd. For C$_{26}$H$_{26}$NO $[M+H]^+$: 368.2009; Found: 368.2010. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 30/70, flow rate 1.0 mL/min, UV detection at 254 nm, t_rmajor = 7.45 min, t_rminor = 6.07 min

N-(2-(4-bromophenyl)-1-p-tolylethyl)-4-methoxyaniline (3o):
Liquid, yield 99%, 97% ee, $[\alpha]_{D}^{20} = +47.4$ (c = 1.50, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.35 (s, 3H), 2.96-3.10 (m, 2H), 3.45 (br s, 1H), 3.70 (s, 3H), 4.46-4.51 (m, 1H), 6.45-6.48 (m, 2H), 6.69 (d, $J = 8.7$ Hz, 2H), 6.99 (d, $J = 8.4$ Hz, 2H), 7.13 (d, $J = 7.8$ Hz, 2H), 7.19 (d, $J = 8.1$ Hz, 2H), 7.340 (d, $J = 8.4$ Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.0, 44.3, 55.6, 59.6, 114.6, 114.9, 120.4, 126.4, 129.2, 130.9, 131.4, 136.7, 136.9, 139.9, 141.2, 152.1. HRMS (ESI) Calcd. For C$_{28}$H$_{26}$BrNNaO $[M+Na]^+$: 418.0777; Found: 418.0780. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 30/70, flow rate 1.0 mL/min, UV detection at 254 nm, t_rmajor = 7.79 min, t_rminor = 5.29 min.

4-methoxy-N-(2-(4-methoxyphenyl)-1-p-tolylethyl)aniline (3p):
Liquid, yield 98%, 96% ee, $[\alpha]_{D}^{20} = +25.2$ (c = 1.39, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.36 (s, 3H), 2.95 (dd, $J = 8.1$ Hz, $J = 13.8$ Hz, 1H), 3.27 (dd, $J = 13.8$ Hz, $J = 8.1$ Hz, 1H), 3.38 (dd, $J = 13.8$ Hz, $J = 6.6$ Hz, 1H), 3.69 (s, 3H), 3.93 (brs, 1H), 4.68 (dd, $J = 8.1$ Hz, $J = 5.4$ Hz), 6.48 (d, $J = 8.7$ Hz, 2H), 6.68 (d, $J = 8.7$ Hz, 2H), 7.18 (d, $J = 7.8$ Hz, 2H), 7.25-7.31 (m, 3H), 7.46-7.53 (m, 2H), 7.65 (s, 1H), 7.77-7.86 (m, 3H). 13C NMR (75 MHz, CDCl$_3$): δ 21.0, 45.4, 55.6, 59.6, 114.6, 114.9, 120.4, 126.4, 129.2, 130.9, 131.4, 136.7, 136.9, 139.9, 141.2, 152.1. HRMS (ESI) Calcd. For C$_{22}$H$_{22}$NO $[M+H]^+$: 368.2009; Found: 368.2010. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 30/70, flow rate 1.0 mL/min, UV detection at 254 nm, t_rmajor = 7.79 min, t_rminor = 5.29 min.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H), 3.08 (dd, J = 5.4 Hz, J = 13.8 Hz, 1H), 3.52 (br s, 1H), 3.69 (s, 3H), 3.81 (s, 3H), 4.47 (dd, J = 5.4 Hz, J = 8.1 Hz, 1H), 6.45 (d, J = 8.7 Hz, 2H), 6.68 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 7.08 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 21.1, 44.3, 55.1, 55.6, 59.8, 113.9, 114.6, 114.8, 126.4, 129.2, 129.9, 130.1, 136.4, 140.7, 141.7, 151.9, 158.3. HRMS (ESI) Calcd. For C$_{23}$H$_{26}$NO$_2$ [M+H]$^+$: 348.1958; Found: 348.1958. HPLC conditions: Chiralcel AD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 7.51$ min, $t_{r_{minor}} = 6.97$ min.

N-(1-(4-bromophenyl)-2-(4-chlorophenyl)ethyl)-4-methoxyaniline (3q): Liquid, yield 99%, 97% ee, $[\alpha]_D^{20} = +48.9$ (c = 1.67, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.99-3.05 (m, 2H), 3.69 (s, 3H), 3.83 (br s, 1H), 4.43-4.49 (m, 1H), 6.40-6.44 (m, 2H), 6.66-6.69 (m, 2H), 7.02 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 8.4 Hz, 2H), 7.25 (m, 2H), 7.43 (d, J = 8.4 Hz, 2H). 13C NMR (75 MHz, CDCl$_3$): δ 44.2, 55.6, 59.4, 114.7, 114.9, 120.8, 128.3, 128.6, 130.5, 131,6, 132.6, 135.7, 140.8, 142.2, 152.3. HRMS (ESI) Calcd. For C$_{21}$H$_{19}$BrClNNaO [M+Na]$^+$: 438.0231; Found: 438.0238. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 17.32$ min, $t_{r_{minor}} = 7.23$ min.

N-(1,2-bis(4-bromophenyl)ethyl)-4-methoxyaniline (3r): Liquid, yield 95%, 93% ee, $[\alpha]_D^{20} = +25.5$ (c = 1.68, CHCl$_3$). 1H NMR (300 MHz, CDCl$_3$): δ 2.99 (d, J = 6.3 Hz, 2H), 3.49 (br s, 1H), 3.69 (s, 3H), 4.43-4.47 (m, 1H), 6.40 (d, J = 8.7 Hz, 2H), 6.7 (d, J = 8.7 Hz, 2H), 6.95 (d, J = 8.4 Hz, 2H), 7.15 (d, J = 8.4 Hz, 2H), 7.38-7.43 (m, 4H). 13C NMR (75 MHz, CDCl$_3$): δ 44.2, 55.6, 59.3, 114.7, 114.9, 120.7, 128.3, 130.9, 131.6, 131.7, 136.2, 140.8, 142.2, 152.3. HRMS (ESI) Calcd. For C$_{21}$H$_{19}$Br$_2$NNaO [M+Na]$^+$: 481.9726, Found: 481.9717. HPLC conditions: Chiralpak OD-H column, i-PrOH/ hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{r_{major}} = 17.09$ min, $t_{r_{minor}} = 7.03$ min.

N-(2-(4-chlorophenyl)-1-p-tolylethyl)-4-methoxyaniline (3s): Liquid, yield 97%, 97% ee, $[\alpha]_D^{20} = +46.0$ (c = 0.27, CHCl$_3$). 1H NMR (CDCl$_3$, 300 MHz): δ 2.34 (s, 3H), 3.07 (d, J = 6.3 Hz, 2H), 3.69 (s, 3H), 3.82
(br s, 1H), 4.45-4.50 (m, 1H), 6.49 (d, $J = 8.4$ Hz, 2H), 6.68 (d, $J = 8.4$ Hz, 2H), 7.03 (d, $J = 7.8$ Hz, 2H), 7.12 (d, $J = 7.8$ Hz, 2H). 7.17-7.25 (m, 4H). 13C NMR (75 MHz, CDCl₃): δ 20.6, 43.9, 55.2, 59.2, 114.3, 114.5, 125.9, 128.1, 128.8, 130.1, 131.9, 135.9, 136.2, 139.7, 140.9, 151.7. HRMS (ESI) Calcd. For C$_{22}$H$_{23}$ClNO [M+Na]$^+$: 352.1463; Found: 352.1468. HPLC condition: Chiralpak OD-H column, i-PrOH/hexane: 20/80, flow rate 1.0 mL/min, UV detection at 254 nm, $t_{major} = 11.06$ min, $t_{minor} = 6.16$ min.

5. Synthesis of (S)-4-amino-N-(1-(4-chlorophenyl)-2-phenylethyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (7)

![Chemical structure](image)

(S)-1-(4-chlorophenyl)-2-phenylethanamine (4)

To a solution of 3d (0.97 g, 2.8 mmol) in MeCN/H$_2$O (20 mL, 1:1) were added H$_2$IO$_6$ (0.66 g, 2.8 mmol) and 1 M aqueous H$_2$SO$_4$ (4.2 mL). The mixture was stirred for 16 h at rt and washed with CH$_2$Cl$_2$ (3×10 mL). The resulting aqueous phase was subsequently brought to pH 10.5 through addition of 5 M aqueous KOH and extracted with EtOAc (4×20 mL). The combined organic layers were dried (MgSO$_4$) and concentrated to afford 4 (0.52 g). Liquid, yield 77%; $[\alpha]_D^{20} = +118.8$ (c = 1.02, MeOH/0.1N HCl: 50/50), lit6: $[\alpha]_D^{20} = -117.0$ (c = 1.02, MeOH/0.1N HCl: 50/50, 77 % ee, R). 1H NMR (CDCl$_3$, 300 MHz): δ 1.53 (br s, 2H), 2.81 (dd, $J = 13.2$ Hz, $J = 8.7$ Hz, 1H), 2.97 (dd, $J = 13.2$ Hz, $J = 5.1$ Hz, 1H), 4.19 (dd, $J = 8.7$ Hz, $J = 5.1$ Hz, 1H), 7.14-7.17 (m, 2H), 7.20-7.32 (m, 7H). 13C NMR (75 MHz, CDCl$_3$): δ 46.4, 56.9, 126.4, 127.8, 128.4, 129.2, 132.5, 138.5, 143.9.
4-(tert-butoxycarbonylamino)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxylic acid (5)

Compound 5 was prepared according to the literature method.7 White solid, yield 92%. 1H NMR (DMSO-d$_6$, 300 MHz): δ 1.38 (s, 9H), 1.85-1.92 (m, 2H), 1.98-2.06 (m, 2H), 3.44-3.51 (m, 2H), 4.27-4.31 (m, 2H), 6.59 (d, $J = 2.4$ Hz, 1H), 7.16 (d, $J = 2.4$ Hz, 1H), 7.28 (br s, 1H), 8.13 (s, 1H), 11.6 (s, 1H).

(S)-tert-butyl4-(1-(4-chlorophenyl)-2-phenylethylcarbamoyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidin-4-ylcarbamate (6)

Compound 5 (2.13 g, 5.89 mmol), compound 4 (1.36 g, 5.86 mmol) and DMAP (10 mg) were dissolved in CH$_2$Cl$_2$ (40 mL). A solution of cyclohexylcarbodiimide (1.58 g, 7.66 mmol) in dichloromethane was added dropwise. After the addition, the mixture was stirred at room temperature for 24 h. The mixture was filtered, the filtrate was evaporated and subjected to chromatography to give 3.09 g of the desired compound 6. White solid, yield 92%. [α]$_D^{20} = -13.9$ (c = 1.32, DMSO). 1H NMR (DMSO-d$_6$, 300 MHz): δ 1.36 (s, 9H), 1.56-1.58 (m, 2H), 1.76-1.78 (m, 2H), 3.01-3.03 (m, 2H), 3.55-3.58 (m, 2H), 3.65-3.69 (m, 1H), 4.07 (d, $J = 13.2$ Hz, 2H), 5.09-5.14 (m, 1H), 6.52 (d, $J = 1.8$ Hz, 1H), 6.96 (s, 1H), 7.15-7.22 (m, 6H), 7.29 (d, $J = 7.8$ Hz, 2H), 7.39 (d, $J = 8.1$ Hz, 2H), 8.02 (d, $J = 8.4$ Hz, 2H), 8.13 (s, 1H), 11.68 (s, 1H). 13C NMR (75 MHz, CDCl$_3$): δ 28.2, 41.1, 41.5, 41.8, 53.1, 57.1, 78.4, 101.0, 102.0, 121.3, 126.2, 127.9, 128.0, 128.6, 129.3, 131.2, 138.6, 142.4, 150.7, 151.9, 154.4, 156.2, 172.8. HPLC condition: Chiralpak AD-H column, i-PrOH/hexane: 30/70, flow rate 1.0 mL/min, UV detection at 254 nm, t_rmajor = 10.09 min, t_rminor = 15.96 min.

(S)-4-amino-N-(1-(4-chlorophenyl)-2-phenylethyl)-1-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)piperidine-4-carboxamide (7)

Compound 6 (0.80 g, 1.39 mmol) was charged in a 50 mL round-bottle flask. A solution of EtOAc (15 mL) saturated with HCl (gas) was added. The mixture was stirred at room temperature until 5 disappeared completely monitored by TLC. The volatiles were removed under vacuum. The residue was diluted with EtOAc (20 mL), H$_2$O (5 mL) and Na$_2$CO$_3$ (1.50 g) were added. The mixture was stirred at room temperature for 0.5 h. The organic phase was separated. The aqueous phase was extracted with EtOAc. The combined organic phase was washed with brine and dried over anhydrous Na$_2$SO$_4$. The solvent was evaporated under vacuum and subjected to chromatography to give 0.63 g of the desired compound 7. White solid, yield 96%. [α]$_D^{20} = -40.0$ (c = 0.18, CHCl$_3$). 1H NMR (DMSO-d$_6$, 300 MHz): δ 1.23-1.27 (m,
2H), 1.74-1.85 (m, 2H), 2.25 (br s, 2H), 3.01-3.03 (m, 2H), 3.47-3.55 (m, 2H), 4.15-4.25 (m, 2H), 5.02-5.05 (m, 1H), 6.53 (d, \(J = 2.4 \) Hz, 1H), 7.14-7.24 (m, 6H), 7.34-7.37 (m, 4H), 8.11 (s, 1H), 8.44 (d, \(J = 8.4 \) Hz, 1H), 11.6 (s, 1H). \(^1^3\)C NMR (DMSO-\(d_6 \), 75 MHz): \(\delta \) 34.1, 34.2, 41.1, 41.3, 41.8, 53.3, 55.6, 100.9, 102.0, 121.1, 126.2, 128.0, 128.1, 128.5, 129.3, 131.3, 138.3, 142.3, 150.7, 151.9, 156.1, 175.9. HRMS (ESI) Calcd. For C\(_{26}\)H\(_{28}\)ClN\(_6\)O \([M+H]^+\): 475.2008; Found: 475.2022.

References:

6. The Copies of 1H NMR, 13C NMR Spectra
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012

[Chemical structure images and spectra graphs]

ZYS-119

PMP-N

PMP-N

[Further chemical structures and spectra graphs]
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
7. The Copies of HPLC Spectra

![HPLC Spectra Diagram 1]

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.662</td>
<td>6673066</td>
<td>714291</td>
<td>40.971</td>
<td>52.180</td>
</tr>
<tr>
<td>2</td>
<td>7.195</td>
<td>6680835</td>
<td>654619</td>
<td>50.029</td>
<td>47.820</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13353901</td>
<td>1368910</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

![HPLC Spectra Diagram 2]

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.932</td>
<td>138186</td>
<td>15057</td>
<td>1.147</td>
<td>1.214</td>
</tr>
<tr>
<td>2</td>
<td>6.410</td>
<td>11908592</td>
<td>1225044</td>
<td>98.853</td>
<td>98.786</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>12046578</td>
<td>1240102</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

Detector A Ch1 / 254nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.608</td>
<td>2617551.7</td>
<td>166199</td>
<td>49.316</td>
<td>63.707</td>
</tr>
<tr>
<td>2</td>
<td>11.822</td>
<td>2690114.5</td>
<td>915029</td>
<td>50.684</td>
<td>36.293</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>5307666.1</td>
<td>2521228</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Detector A Ch1 / 254nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.639</td>
<td>602260</td>
<td>35002</td>
<td>1.247</td>
<td>2.287</td>
</tr>
<tr>
<td>2</td>
<td>11.595</td>
<td>47698091</td>
<td>1538024</td>
<td>98.753</td>
<td>97.713</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>48300351</td>
<td>1574026</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Detector A Ch 1 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.866</td>
<td>5665786</td>
<td>758882</td>
<td>49.647</td>
<td>57.020</td>
</tr>
<tr>
<td>2</td>
<td>6.638</td>
<td>5746448</td>
<td>572033</td>
<td>50.353</td>
<td>42.980</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11412234</td>
<td>1330915</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Detector A Ch 1 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.862</td>
<td>273413</td>
<td>33983</td>
<td>2.439</td>
<td>3.071</td>
</tr>
<tr>
<td>2</td>
<td>6.650</td>
<td>10935151</td>
<td>1072628</td>
<td>97.561</td>
<td>96.929</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11208564</td>
<td>1106611</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Detector A Ch1 254nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ref. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.596</td>
<td>21788342</td>
<td>516961</td>
<td>49.941</td>
<td>56.385</td>
</tr>
<tr>
<td>2</td>
<td>7.322</td>
<td>21839937</td>
<td>1173380</td>
<td>50.059</td>
<td>43.615</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>43628278</td>
<td>2690342</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Detector A Ch1 254nm

<table>
<thead>
<tr>
<th>Peak</th>
<th>Ref. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.627</td>
<td>437855</td>
<td>31358</td>
<td>1.231</td>
<td>1.700</td>
</tr>
<tr>
<td>2</td>
<td>7.337</td>
<td>35130603</td>
<td>1813650</td>
<td>98.769</td>
<td>98.300</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>35568459</td>
<td>1845007</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>
Detector A Chl / 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.122</td>
<td>44601028</td>
<td>2499967</td>
<td>47.126</td>
<td>61.880</td>
</tr>
<tr>
<td>2</td>
<td>11.087</td>
<td>50041736</td>
<td>1540060</td>
<td>52.874</td>
<td>38.120</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>94642764</td>
<td>4040034</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>

Detector A Chl / 254nm

<table>
<thead>
<tr>
<th>Peak#</th>
<th>Ret. Time</th>
<th>Area</th>
<th>Height</th>
<th>Area %</th>
<th>Height %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.160</td>
<td>729341</td>
<td>50667</td>
<td>1.439</td>
<td>3.148</td>
</tr>
<tr>
<td>2</td>
<td>11.060</td>
<td>49951270</td>
<td>1558603</td>
<td>98.561</td>
<td>96.852</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>50680611</td>
<td>1609270</td>
<td>100.000</td>
<td>100.000</td>
</tr>
</tbody>
</table>