An unexpected formation of the novel 7-oxa-2-azabicyclo[2.2.1]hept-5-ene skeleton during the reaction of furfurylamine with maleimides and their bioprospection using zebrafish embryo model

Carlos E. Puerto Galvis and Vladimir V. Kouznetsov*

Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga A.A. 678, Colombia. Fax/Tel: +57 76 349069
*kouznet@uis.edu.co

ELECTRONIC SUPPORTING INFORMATION

List of contents

1. General
2. Reagents and catalysts
3. Preparation and characterization of benzaldehyde oximes 2a-2g
4. Preparation and characterization of N-benzylmaleimides 4a-4i
5. General procedure for the synthesis of the 7-oxa-2-azabicyclo[2.2.1]hept-5-enes 6a-6k
6. General procedure for the synthesis of the N-(10-oxa-4-azatricyclo[5.2.1.0^2,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamides 7a-7c
7. In vitro acetylcholinesterase inhibitory activity essay for compounds 6a-6k and 7a-7c
8. Toxicity Assessment in Vivo using zebrafish embryos for compounds 6a-6k and 7a-7c
9. Copies of GC, 1H NMR, 13C NMR, DEPT-135, COSY, 13C HMBC and HSQC charts of the synthesized 7-Oxa-2-azabicycles

Puerto & Kouznetsov, Page SI-1
1. General

Infrared (FT-IR) spectra were recorded on Lumex Infralum FT-02 spectrometer, ν_{max} in cm$^{-1}$. Bands are characterized according to the functional group. 1H-NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer. Chemical shifts are reported in ppm with the solvent resonance as the internal standard (CDCl$_3$: δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, br = broad, m = multiplet), coupling constants (Hz) and integration. 13C-NMR spectra were recorded on a Bruker Avance-400 (400 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from solvent resonance as the internal standard (CDCl$_3$: δ 77.00 ppm). On DEPT-135 spectra, the signals of CH$_3$ and CH carbons are shown as positive (+) and CH$_2$ carbons are shown negative (-). Quaternary carbons are not shown. COSY, 13C-HMBC and HSQC experiments were recorded using standard Bruker pulse sequences. A Hewlett Packard 5890a Series II Gas Chromatograph interfaced to an HP 5972 Mass Selective Detector (MSD) with an HP MS ChemStation Data system was used for MS identification at 70 eV using a 60 m capillary column coated with HP-5 [5%-phenylpoly(dimethylsiloxane)]. High-resolution mass spectrometry was performed on a Micromass Q-TOF by electrospray ionisation (ESI). Melting points were measured on a Fisher Johns melting point apparatus and are uncorrect.

Unless otherwise noted, all reactions have been carried out with distilled and dried solvents and under atmosphere pressure. All work-up and purification procedures were carried out with reagent grade solvents (purchased from Aldrich and Merck) in air. Thin-layer chromatography (TLC) was performed using E. Merck silica gel 60 F254 precoated plates (0.25 mm). Column chromatography was performed using silicagel 60 (0.063-0,200 mm) 70-230 mesh.

2. Reagents and catalysts

Benzaldehyde: Was purchased from Merck and used as received.

4-Chlorobenzaldehyde: Was purchased from Aldrich and used as received.

4-Fluorobenzaldehyde: Was purchased from Aldrich and used as received.

4-Methylbenzaldehyde: Was purchased from Aldrich and used as received.

4-Methoxybenzaldehyde: Was purchased from Aldrich and used as received.

3,4-Methylenedioxybenzaldehyde: Was purchased from Merck and used as received.

1-Naphthaldehyde: Was purchased from Merck and used as received.

Hydroxylamine hydrochloride: Was purchased from Merck and used as received.
Sodium carbonate: Was purchased from Merck and used as received.

Palladium on activated charcoal (10 %): Was purchased from Aldrich and used as received.

Maleic anhydride: Was purchased from Merck and used as received.

Sodium acetate anhydrous: Was purchased from Merck and dried at 100 ºC for 3 days.

Acetic anhydride: Was purchased from Merck and used as received.

(S)-(−)-α-Methylbenzylamine: Was purchased from Aldrich and used as received.

(R)-(+)−α-Methylbenzylamine: Was purchased from Aldrich and used as received.

Furfurylamine: Was purchased from Aldrich and used as received.

Boric acid: Was purchased from Aldrich and used as received.

Polyethylene glycol 400 (PEG-400): Was purchased from Merck and used as received.

Maleimide: Was purchased from Aldrich and used as received.

N-Phenylmaleimide: Was purchased from Aldrich and used as received.

3. Preparation and characterization of benzaldehyde oximes

A mixture of Na₂CO₃ (17 mmol) and hydroxylamine hydrochloride (17 mmol) was dissolved in 20 mL of deionized water and 4 mL of ethanol at room temperature for 5 min. To the above mixture, small amounts of the corresponding (hetero)aromatic aldehydes 1a-g (14.13 mmol) were added for a period of 5 min. with constant stirring. The reaction mixture was stir for another 15 min. and at the end of the reaction (confirmed by TLC) the reaction was diluted with water (30 mL) and the precipitated product was filtered off and dried in vacuum. In cases, where product did not precipitate out the reaction, the mixture was extracted with ethyl acetate (3 x 10 mL). The organic extract was dried over anhydrous Na₂SO₄ and the solvent concentrate under reduced pressure to yield the pure product, the substituted oximes 2a-g.

Benzaldehyde oxime (2a): Extraction with ethyl acetate afforded a white solid (1.71 g, 14.13 mmol, quantitative yield); R_f = 0.77 (2:1 hexane/EtOAc); mp. 34-36 ºC; FT-IR (KBr, cm⁻¹): 3455 (OH), 2969 (=CHAr), 1604 (C=N), 1511 (-OH), 1419 (C-N); GC: R_t = 6.02 min.; MS (EI),
m/z (%): 121 (M⁺, 100), 94 (38), 78 (61), 77 (60), 51 (46). Acquired data are in agreement with the literature.¹

4-Chlorobenzaldehyde oxime (2b): Extraction with ethyl acetate afforded a white solid (1.66 g, 10.67 mmol, quantitative yield); R_f = 0.52 (2:1 hexane/EtOAc); mp. 92-94 °C; FT-IR (KBr, cm⁻¹): 3301 (OH), 1589 (C=N), 1496 (C-N), 971 (C-H), 694 (C-Cl); GC: R_t = 11.08 min.; MS (EI), m/z (%): 155 (M⁺, 99), 139 (100), 136 (82), 111 (73), 75 (70). Acquired data are in agreement with the literature.²

4-Fluorobenzaldehyde oxime (2c): Extraction with ethyl acetate afforded a white solid (1.66 g, 10.67 mmol, quantitative yield); R_f = 0.72 (2:1 hexane/EtOAc); mp. 85-87 °C; FT-IR (KBr, cm⁻¹): 3313 (OH), 1584 (C=N), 1502 (C-N), 970 (C-H), 703 (C-F); GC: R_t = 15.34 min.; MS (EI), m/z (%): 139 (M⁺, 95), 123 (100), 108 (58), 95 (61), 75 (70). Acquired data are in agreement with the literature.³

4-Methylbenzaldehyde oxime (2d): Extraction with ethyl acetate afforded a white solid (1.66 g, 10.67 mmol, quantitative yield); R_f = 0.52 (2:1 hexane/EtOAc); mp. 54-55 °C; FT-IR (KBr, cm⁻¹): 3333 (OH), 2994 (CH₃), 1572 (C=N), 1497 (C-N), 1028 (C-H); GC: R_t = 10.41 min.; MS (EI), m/z (%): 135 (M⁺, 96), 119 (100), 104 (76), 91 (83), 75 (61). Acquired data are in agreement with the literature.⁴

4-Methoxybenzaldehyde oxime (2e): Extraction with ethyl acetate afforded a yellowish solid (1.66 g, 11.01 mmol, quantitative yield); R_f = 0.54 (2:1 hexane/EtOAc); mp. 102-104 °C; FT-IR (KBr, cm⁻¹): 3178 (OH), 3008 (OCH₃), 1604 (C=N), 1249 (C-O-C); GC: R_t = 9.71 min.; MS (EI), m/z (%): 151 (M⁺, 53), 119 (99), 91 (100), 77 (34), 63 (20). Acquired data are in agreement with the literature.²

3,4-Methylenedioxybenzaldehyde oxime (2f): Precipitation with water afforded a white solid (1.65 g, 9.99 mmol, quantitative yield); R_f = 0.65 (2:1 hexane/EtOAc); mp. 110-112 °C; FT-IR (KBr, cm⁻¹): 3224 (OH), 2915 (CH₂), 1604 (C=N), 1249 (C-O-C); GC: R_t = 11.83 min.; MS

H₃BO₃-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

EI, m/z (%): 165 (M⁺, 100), 122 (60), 121 (53), 65 (37), 63 (42). Acquired data are in agreement with the literature.⁵

1-Naphthylaldehyde oxime (2g): Precipitation with water afforded a white solid (1.64 g, 9.61 mmol, quantitative yield); Rₛ = 0.74 (2:1 hexane/EtOAc); mp. 99-100 °C; FT-IR (KBr, cm⁻¹): 3394 (OH), 3070 (=CH Ar), 1619 (C=N), 1511 (-OH), 1450 (C-N); GC: Rᵣ = 14.30 min.; MS (EI), m/z (%): 171(M⁺, 50), 154 (100), 153 (87), 127 (93), 125 (50). Acquired data are in agreement with the literature.⁵

4. Preparation and characterization of N-benzylmaleimides

A solution of the corresponding benzaldehyde oxime 2a-g (8.25 mmol) in ethanol (25 mL) was hydrogenated under H₂ atmosphere using 10 % Pd/C (200 mg) until the complete consumption of the oxime was verified by TLC. The suspension was filtered through a small pad of Celite and the filter was washed with EtOH (10 mL); the combined filtrates were concentrated in vacuo to furnish the unstable benzylamines 3a-g, as an oils. Without further purification, the crude amine 3a-g (8.25 mmol), was dissolved in anhydrous diethyl ether (10 mL), was added dropwise into an ice-cooled solution of maleic anhydride (8.25 mmol) in anhydrous diethyl ether (15 mL). The solid, which precipitated out of the reaction mixture after 1 h, was filtered, washed thoroughly with ethyl ether and mixed with acetic anhydride (1.6 mL) and sodium acetate (4.12 mmol). The reaction mixture was then heated at 70 °C (6 h) until the complete consumption of the starting amine was ascertained by TLC. After cooling the system at room temperature, the solution was alkalinized with aqueous Na₂CO₃ 2 M and the product was extracted with CH₂Cl₂ (3 x 10 mL) the organic extracts were combined, dried and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel and eluted with hexane/EtOAc (1:1) to afford the desired maleimide.

N-Benzylnmaleimide (4a): Same procedure as above was followed on a 7.28 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (0.94 g, 5.02

mmol, 69 % yield); \(R_f = 0.6 \) (1:1 hexane/EtOAc); mp. 71-73 °C; FT-IR (KBr, cm\(^{-1}\)): 3101 (=CH\(_{Ar}\)), 1697 (C=O), 1403 (CH\(_2\)), 694 (HC=CH); GC: \(R_t = 11.29 \) min.; MS (EI), \(m/z \) (%): 187 (M\(^+\), 100), 130 (41), 106 (59), 105 (53), 78 (23). Acquired data are in agreement with the literature.\(^6\)

N-(4-Chlorobenzyl)maleimide (4b): Same procedure as above was followed on a 6.16 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (1.09 g, 4.93 mmol, 80 % yield); \(R_f = 0.58 \) (1:1 hexane/EtOAc); mp. 68-70 °C; FT-IR (KBr, cm\(^{-1}\)): 3101 (=CH\(_{Ar}\)), 1712 (C=O), 1403 (CH\(_2\)), 833 (C-Cl), 694 (HC=CH); GC: \(R_t = 14.29 \) min.; MS (EI), \(m/z \) (%): 221 (M\(^+\), 95), 186 (41), 140 (100), 137 (64), 89 (42). Acquired data are in agreement with the literature.\(^7\)

N-(4-Fluorobenzyl)maleimide (4c): Same procedure as above was followed on a 7.99 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (1.41 g, 6.87 mmol, 86 % yield); \(R_f = 0.66 \) (1:1 hexane/EtOAc); mp. 88-90 °C; FT-IR (KBr, cm\(^{-1}\)): 3101 (=CH\(_{Ar}\)), 1697 (C=O), 1403 (CH\(_2\)), 848 (C-F), 694 (HC=CH); GC: \(R_t = 11.49 \) min.; MS (EI), \(m/z \) (%): 205 (M\(^+\), 100), 148 (55), 124 (71), 122 (97), 109 (51). Acquired data are in agreement with the literature.\(^6\)

N-(4-Methylbenzyl)maleimide (4d): Same procedure as above was followed on a 8.25 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (1.26 g, 6.27 mmol, 76 % yield); \(R_f = 0.78 \) (1:1 hexane/EtOAc); mp. 94-96 °C; FT-IR (KBr, cm\(^{-1}\)): 3101 (=CH\(_{Ar}\)), 2946 (CH\(_3\)), 1712 (C=O), 1403 (CH\(_2\)), 694 (HC=CH); GC: \(R_t = 12.76 \) min.; MS (EI), \(m/z \) (%): 201 (M\(^+\), 100), 120 (59), 118 (47), 92 (24), 91 (25). Acquired data are in agreement with the literature.\(^8\)

N-(4-Methoxybenzyl)maleimide (4e): Same procedure as above was followed on a 6.39 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (0.73 g, 3.39 mmol, 53 % yield); \(R_f = 0.66 \) (1:1 hexane/EtOAc); mp. 101-103 °C; FT-IR (KBr, cm\(^{-1}\)): 3101 (=CH\(_{Ar}\)), 2946 (OCH\(_3\)), 1712 (C=O), 1403 (CH\(_2\)), 1249 (C-O-C), 694 (HC=CH); GC: \(R_t \)

Puerto & Kouznetsov, Page SI-6
= 15.51 min.; MS (EI), m/z (%): 217 (M⁺, 100), 174 (62), 136 (51), 134 (45), 77 (43). Acquired data are in agreement with the literature.⁹

N-(3,4-Methylenedioxybenzyl)maleimide (4f): Same procedure as above was followed on a 5.75 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (0.90 g, 3.91 mmol, 68 % yield); Rf = 0.66 (1:1 hexane/EtOAc); mp. 101-103 °C; FT-IR (KBr, cm⁻¹): 3001 (=CHAr), 2915 (CH 2), 1712 (C=O), 1403 (CH2), 1249 (C-O-C), 694 ν(HC=CH); GC: Rₜ = 17.91 min.; MS (EI), m/z (%): 231 (M⁺, 100), 150 (28), 148 (32), 135 (23), 77 (24). Acquired data are in agreement with the literature.¹⁰

N-(Naphthalen-1-ylmethyl)maleimide (4g): Same procedure as above was followed on a 4.18 mmol scale. Purification by silica gel flash chromatography afforded a white crystalline solid (0.82 g, 3.43 mmol, 62 % yield); Rf = 0.73 (1:1 hexane/EtOAc); mp. 73-75 ºC; FT-IR (KBr, cm⁻¹): 3070 (=CH Ar), 1697 (C=O), 1403 (CH2), 1373 (C=C Ar), 694 (HC=CH); GC: Rₜ = 24.22 min.; MS (EI), m/z (%): 237 (M⁺, 100), 127 (71), 115 (67), 55 (92), 54 (68). Acquired data are in agreement with the literature.⁶

S-(-)-N-(1-Feniletil)maleimide (4h): Compound 7h was obtained from commercial available α-(S)-methyl-benzylamine 3h according to the procedure described in section 4. Purification by silica gel flash chromatography a transparent oil (0.99 g, 5.12 mmol, 62 % yield) was obtained; Rf = 0.66 (1:1 hexane/EtOAc); FT-IR (KBr, cm⁻¹): 3101 (=CHAr), 2977 (CH 3), 1712 (C=O), 1388 (CH3), 694 (HC=CH); GC: Rₜ = 11.99 min.; MS (EI), m/z (%): 201 (M⁺, 100), 186 (64), 158 (67), 104 (50), 77 (59). Acquired data are in agreement with the literature.¹¹

R-(+)-N-(1-Feniletil)maleimide (4i): Compound 7i was obtained from commercial available α-(R)-methyl-benzylamine 3i according to the procedure described in section 4. Purification by silica gel flash chromatography a transparent oil (1.02 g, 4.95 mmol, 60 % yield) was obtained; Rf = 0.65 (1:1 hexane/EtOAc); FT-IR (KBr, cm⁻¹): 3101 (=CHAr), 2977 (CH3), 1712 (C=O), 1388 (CH3), 694 (HC=CH); GC: Rₜ = 12.02 min.; MS (EI), m/z (%): 201 (M⁺, 100), 186 (65), 158 (39), 104 (57), 77 (72). Acquired data are in agreement with the literature.¹¹

5. General procedure for the synthesis of the 7-oxa-2-azabicyclo[2.2.1]hept-5-enes 6a-6i

A solution of the corresponding maleimide 4a-4i (2.13 mmol) in 10 mL of polyethylenglycol 400 (PEG-400) was placed in a 50 mL Schlenk round-bottom flask heated at 90 °C and under positive nitrogen pressure, then boric acid (10 % mol) was added in one portion and after 20 min, furfurylamine (2.55 mmol) were added over a few minutes in small portions. The reaction was monitored by TLC after 60 min and the mixture was poured into 50 mL of NaHCO₃ solution 1 M and extracted with dichloromethane (3 x 10 mL). The combined organic extracts were dried over anhydrous Na₂SO₄ and concentrated in vacuo to obtain brown oils. The residue was purified by column chromatography on silica gel and eluted with hexane/EtOAc (2:1) to afford the desired products as colored oils.

4-(N-Benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6a): Purification by silica gel column chromatography afforded pure 6a as a red oil (490 mg, 1.72 mmol, 82 % yield). R_f = 0.43 (1:1 hexane/EtOAc); FT-IR (liquid film, cm⁻¹): 3317 (NH), 3039 (=CH Ar), 1712 (C=O), 1403 (HC=CH). ¹H NMR δ (400 MHz, CDCl₃): 7.35 (3H, dd, J = 6.2, 1.1 Hz, HPh-9', 11' y H-1), 7.32 – 7.26 (3H, m, HPh-8', 10', 12'), 6.30 (1H, dd, J = 3.1, 1.9 Hz, H-6), 6.19 (1H, d, J = 3.1 Hz, H-5), 4.63 (2H, s, H-CH₂Ph), 3.91 (1H, d, J = 14.6 Hz, H_eq-3), 3.83 (1H, d, J = 14.6 Hz, H_ax-3), 3.72 (1H, dd, J = 8.2, 5.0 Hz, H_eq-3'), 2.86 (1H, dd, J = 17.9, 8.3 Hz, H_ax-4'), 2.46 (1H, d, J = 17.9, 5.0 Hz, H_eq-4'), 2.11 (2H, br.s., NH) ppm. ¹³C NMR δ (400 MHz, CDCl₃): 177.4, 174.8, 152.2, 142.5 (+), 135.5, 128.9 (2xC H, +), 128.7 (2xC H, +), 128.1 (+), 110.4 (+), 108.1 (+), 55.1 (+), 44.1 (-), 42.5 (-), 36.3 (-) ppm. COSY Correlation [δ_H/δ_H]: 7.32-7.26 [HPh-9'/11'/HPh-8'/10'/12'], 7.35/6.30[H-1/H-6], 7.35/6.19 [H-1/H-5], 7.35/4.63 [HPh-9'/11'/H-CH₂Ph], 7.32-7.26 /4.63 [HPh-8'/10'/12'/H-CH₂Ph], 6.30/6.19 [H-6/H-5], 6.30/3.91 [H-6/H_eq-3], 6.30/3.83 [H-6/H_ax-3], 6.19/3.91 [H-5/H_eq-3], 6.19/3.83 [H-5/H_ax-3], 4.63/2.46 [H-CH₂Ph/H_ax-4'], 4.63/2.86 [H-CH₂Ph/H_eq-4'], 3.72/2.46 [H_eq-3'/H_ax-4'], 3.72/2.86 [H_eq-3'/H_eq-4'], 2.86/2.46 [H_eq-4'/H_ax-4']. HSQC Correlation [δ_H/δ_C]: 7.35-7.26/128.1-128.9 [HPh/CPh], 7.35/142.5 [H-1/C-1], 6.30/110.4 [H-6/C-6], 6.19/108.1 [H-5/C-5], 4.63/42.5 [H-CH₂Ph/C-6'], 3.91/44.1 [H_eq-3/C-3], 3.83/44.1 [H_ax-3/C-3], 3.72/55.1 [H_eq-3'/C-3'], 2.86/36.3
4-(N-(4-Chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6b): Purification by silica gel column chromatography afforded pure 6b as a yellow oil (480 mg, 1.52 mmol, 84 % yield).

Rf = 0.45 (1:1 hexane/EtOAc); FT-IR (liquid film, cm⁻¹): 3317 (NH), 2931 (=CH₂Ar), 1712 (C=O), 1403 (CH₂), 1342 (C-Cl). ¹H NMR δ (400 MHz, CDCl₃): 7.36 (1H, dd, J = 1.9, 0.8 Hz, H-1), 7.31-7.24 (4H, m, HAr-8', 9', 11', 12'), 6.30 (1H, dd, J = 3.2, 1.9 Hz, H-6), 6.20 (1H, d, J = 3.2 Hz, H-5), 4.59 (2H, s, H-CH₂Ar), 3.91 (1H, d, J = 14.6 Hz, Heq-3), 3.82 (1H, d, J = 14.6 Hz, Haq-3), 3.72 (1H, dd, J = 8.3, 5.0 Hz, Heq-3'), 2.86 (1H, dd, J = 18.0, 8.3 Hz, Hax-4'), 2.46 (1H, dd, J = 18.0, 5.0 Hz, Haq-4'), 2.10 (1H, br.s., NH) ppm. ¹³C NMR δ (101 MHz, CDCl₃): 177.4, 174.7, 152.2, 142.5 (+), 134.1, 133.9, 130.4 (2x CH, +), 128.9 (2xCH, +), 110.4 (+), 108.1 (+), 55.0 (+), 44.1 (-), 41.8 (-), 36.3 (-) ppm. COSY Correlation [δH/δH]: 7.36/6.20 [H-1/H-5], 7.36/6.30 [H-1/H-6], 7.31-7.24/4.59 [HAr-8', 9', 11', 12', H-CH₂Ar], 6.30/6.20 [H-6/H-5], 6.20/3.82 [H-5/Haq-3'], 3.72/2.46 [Heq-3'/Hax-4'], 3.72/2.86 [Haq-3'/Hax-4'], 2.86/2.46 [Hax-4'/ Hax-4']. HSQC Correlation [δH/δC]: 7.36/142.5 [H-1/C-1], 7.31-7.24 /128.9-130.4 [HAr/C₆], 6.30/110.4 [H-6/C-6], 6.20/108.1 [H-5/C-5], 4.59/41.8 [H-CH₂Ar/C-6'], 3.91/44.1 [Haq-3/C-3], 3.82/44.1 [Haq-3/C-3], 3.72/55.0 [Haq-3'/C-3'], 2.86/36.3 [Hax-4'/C-4'], 2.46/36.3 [Hax-4'/C-4']. HMBC Correlation [δH/δC]: 7.36/108.1/152.2 [HAr-8', 9', 11', 12', H-8', 9', 10', 11', 12', 10'-/C-7'], 6.30/108.1/142.5/152.2 [H-6/C-5/C-1/C-4], 6.20/110.4/142.5/152.2 [H-5/C-6/C-1/C-4], 4.59/128.9-130.4/174.7 [H-CH₂Ar/C-7', 8', 9', 10', 11', 12', 10'/C-8', 9', 10', 11', 12'/C-7'], 3.91/55.0/108.1 /152.2 [Haq-3/C-3'/C-5/C-4'], 3.82/55.1/108.1/152.2 [Hax-3/C-3'/C-5/C-4'], 3.72/36.3/44.1/174.7 [Hax-4'/C-3'/C-5'/C-2'], 2.86/55.0/174.7/177.4 [Hax-4'/C-3'/C-5'/C-2'], 2.46/55.0/174.7/177.4 [Haq-3'/C-3'/C-5'/C-2']. GC: Rf = 25.28 min.; MS (EI), m/z (%): 317 (M⁺, 1), 307.1053, found: 307.1049.
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

Puerto & Kouznetsov, Page SI-10

(1), 127 (7), 125 (22), 96 (100), 81 (36), 53 (9). HRMS (ESI+): m/z: calcd for C$_{16}$H$_{16}$ClN$_2$O$_3$ (M+H$^+$) 319.0844, found: 319.0851; Calcd for C$_{16}$H$_{15}$ClN$_2$O$_3$Na (M+Na$^+$) 341.0663, found: 341.0667.

4-(N-(4-Fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6c):

Purification by silica gel column chromatography afforded pure 6c as a yellow oil (510 mg, 1.71 mmol, 88 % yield). R$_f$ = 0.56 (1:1 hexane/EtOAc); FT-IR (liquid film, cm$^{-1}$): 3317 (NH), 2931 (=CHAr), 1712 (C=O), 1403 (CH$_2$), 1342 (HC=CH), 632 (C-F). 1H NMR δ (400 MHz, CDCl$_3$):

7.36 (1H, dd, J = 1.8, 0.6 Hz, H-1), 7.35-7.31 (2H, m, H$_{Ar}$-8', 12'), 7.00-6.92 (2H, m, H$_{Ar}$-9', 11'), 6.30 (1H, dd, J = 3.1, 1.9 Hz, H-6), 6.19 (1H, d, J = 3.2 Hz, H-5), 4.59 (2H, s, H-CH$_2$Ar), 3.91 (1H, d, J = 14.6 Hz, H$_{eq}$-3), 3.82 (1H, d, J = 14.6 Hz, H$_{ax}$-3), 3.72 (1H, dd, J = 8.2, 5.0 Hz, H$_{eq}$-4'), 2.45 (1H, dd, J = 17.9, 5.0 Hz, H$_{ax}$-4'), 2.07 (1H, br.s., NH) ppm. 13C NMR δ (101 MHz, CDCl$_3$):

177.4, 174.8, 162.5, 152.2, 142.5 (+), 131.4, 130.9 (2xCH, +), 115.6 (2xCH, +), 110.4 (+), 108.1 (+), 55.0 (+), 44.1 (-), 41.7 (-), 36.3 (-) ppm. COSY Correlation [δH/δH]: 7.36/6.19 [H-1/H-5], 7.35-7.31/7.00-6.92 [H$_{Ar}$-8',12'/H$_{Ar}$-9',11'], 6.30/6.19 [H-6/H-5], 6.19/3.91 [H-5/H$_{eq}$-3], 6.19/3.82 [H-5/H$_{ax}$-3], 3.72/2.85 [H$_{eq}$-3'/H$_{ax}$-4'], 2.85/2.45 [H$_{eq}$-4'/H$_{ax}$-4']. HSQC Correlation [δH/δC]: 7.36/142.5 [H-1/C-1], 7.35-7.31/130.9 [H$_{Ar}$-8',12'/C-8',12'], 7.00-6.92/115.6 [H$_{Ar}$-9',11'/C-9',11'], 6.30/110.4 [H-6/C-6], 6.19/108.1 [H-5/C-5], 4.59/41.7 [H-CH$_2$Ar/C-6'], 3.91/44.1 [H$_{eq}$-3/C-3], 3.82/44.1 [H$_{ax}$-3/C-3], 3.72/55.0 [H$_{eq}$-3'/C-3'], 2.85/36.3 [H$_{eq}$-4'/C-4'], 2.45/36.3 [H$_{ax}$-4'/C-4']. HMBC Correlation [δH/δC]: 7.36/108.1/110.4/152.2 [H-1/C-5/C-6/C-4], 7.35-7.31/41.7/115.6/131.4/162.5[H$_{Ar}$-8',12'/C-6'/C-9',11'/C-7/C-10'], 7.00-6.92/130.9/131.4/162.5 [H$_{Ar}$-9',11'/C-8',12'/C-7/C-10'], 6.30/108.1/142.5/152.2 [H-6/C-5/C-1/C-4], 6.19/110.4/142.5/152.2 [H-5/C-6/C-1/C-4], 4.59/130.9/131.4/174.8/177.4 [H-CH$_2$Ar/C-8',12'/C-7'/C-5'/C-2'], 3.91/55.0/108.1/152.2 [H$_{eq}$-3/C-3'/C-5/C-4], 3.82/55.0/108.1/152.2 [H$_{ax}$-3/C-3'/C-5/C-4], 3.72/36.3/44.1/174.8/177.4 [H$_{eq}$-3'/C-4'/C-3/C-5'/C-2'], 2.85/55.0/174.8/177.4 [H$_{eq}$-4'/C-3'/C-5'/C-2'], 2.45/55.0/174.8/177.4 [H$_{ax}$-4'/C-3'/C-5'/C-2']. GC: Rt = 23.17 min.; MS (EI), m/z (%): 301 (M$^+$, 1), 285 (1), 109 (33), 97 (6), 96 (100), 81 (42). HRMS (ESI+): m/z: calcd for C$_{16}$H$_{16}$FN$_2$O$_3$ (M+H$^+$) 303.1139, found: 303.1135; Calcd for C$_{16}$H$_{15}$FN$_2$O$_3$Na (M+Na$^+$) 325.0959, found: 325.0953.

4-(N-(4-Methylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6d):

Purification by silica gel column chromatography afforded pure 6d as a yellow oil (550 mg, 1.84 mmol, 93 % yield). R$_f$ = 0.42 (1:1 hexane/EtOAc); FT-IR (liquid film, cm$^{-1}$): 3317 (NH), 3023

Puerto & Kouznetsov, Page SI-10
H$_2$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

Puerto & Kouznetsov, Page SI-11

HClO_3, 2931 (=CH$_2$), 1712 (C=O), 1403 (CH$_2$), 1342 (HC=CH). 1H NMR δ (400 MHz, CDCl$_3$): 7.38 (1H, dd, $J = 1.8, 0.8$ Hz, H-1), 7.28-7.26 (2H, m, H$_{Ar}$-8’, 12’), 7.12 (2H, d, $J = 7.8$ Hz, H$_{Ar}$-9’, 11’), 6.32 (1H, dd, $J = 3.2, 1.9$ Hz, H-6), 6.21 (1H, d, $J = 3.2$ Hz, H-5), 4.61 (2H, s, H-CH$_2$Ar), 3.93 (1H, d, $J = 14.6$ Hz, H$_{eq}$-3), 3.84 (1H, d, $J = 14.7$ Hz, H$_{ax}$-3), 3.72 (1H, dd, $J = 8.3, 5.0$ Hz, H$_{eq}$-3’), 2.87 (1H, dd, $J = 17.9, 8.3$ Hz, H$_{eq}$-4’), 2.47 (1H, dd, $J = 17.9, 5.0$ Hz, H$_{ax}$-4’), 2.32 (3H, s, CH$_3$), 2.10 (1H, br.s., NH) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 177.5, 174.9, 152.2, 142.5 (+), 137.9, 132.5, 129.4 (2xCH, +), 128.9 (2xCH, +), 110.4 (+), 108.1 (+), 55.0 (+), 44.1 (-), 42.2 (-), 36.3 (-), 21.2 (+) ppm. GC: $R_t = 23.99$ min.; MS (EI), m/z (%): 297 (M$^+$, 1), 281 (1), 97 (6), 96 (10), 81 (39), 53 (12). HRMS (ESI+): m/z: calcd for C$_{17}$H$_{19}$N$_2$O$_3$ (M+H$^+$) 299.1390, found: 299.1387; Calcd for C$_{17}$H$_{18}$N$_2$O$_3$Na (M+Na$^+$) 321.1210, found: 321.1206.

4-(N-(4-Methoxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6e):

Purification by silica gel column chromatography afforded pure 6e as a yellow oil (520 mg, 1.67 mmol, 91 % yield). $R_f = 0.49$ (1:1 hexane/EtOAc); FT-IR (liquid film, cm$^{-1}$): 3317 (NH), 2931 (=CH$_2$Ar), 2838 (OCH$_3$), 1697 (C=O), 1403 (CH$_2$), 1342 (HC=CH), 1249 (C-O-C). 1H NMR δ (400 MHz, CDCl$_3$): 7.36 (1H, dd, $J = 1.8, 0.7$ Hz, H-1), 7.33-7.27 (2H, m, H$_{Ar}$-8’, 12’), 6.83-6.79 (2H, m, H$_{Ar}$-9’, 11’), 6.30 (1H, dd, $J = 3.1, 1.9$ Hz, H-6), 6.19 (1H, d, $J = 3.2$ Hz, H-5), 4.57 (2H, s, H-CH$_2$Ar), 3.91 (1H, d, $J = 14.6$ Hz, H$_{eq}$-3), 3.82 (1H, d, $J = 14.6$ Hz, H$_{ax}$-3), 3.76 (3H, s, OCH$_3$), 3.70 (1H, dd, $J = 8.3, 5.0$ Hz, H$_{eq}$-3’), 2.84 (1H, dd, $J = 17.9, 8.3$ Hz, H$_{eq}$-4’), 2.44 (1H, dd, $J = 17.9, 5.0$ Hz, H$_{ax}$-4’), 2.09 (1H, br.s., NH) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 177.5, 174.9, 159.4, 152.3, 142.5 (+), 130.4 (2xCH, +), 127.8, 114.0 (2xC H, +), 110.3 (+), 108.1 (+), 55.3 (+), 55.1 (+), 44.1 (-), 41.9 (-), 36.3 (-) ppm. COSY Correlation [δ_H/[δ_H]: 7.36/6.19 [H-1/H-5], 7.36/6.30 [H-1/H-6], 7.33-7.27/4.57[H$_{Ar}$-8’,12’/H-CH$_2$Ar], 7.33-7.27/6.83-6.79 [H$_{Ar}$-8’,12’/H$_{Ar}$-9’,11’], 6.30/6.19 [H-6/H-5], 6.19/3.91 [H-5/H$_{eq}$-3], 6.19/3.82 [H-5/H$_{ax}$-3], 3.70/2.44 [H$_{eq}$-3'/H$_{eq}$-4’], 3.70/2.84 [H$_{eq}$-3'/H$_{eq}$-4’], 2.44/2.84 [H$_{eq}$-4’/ H$_{ax}$-4’]. HSQC Correlation [δ_H/[δ_C]: 7.36/142.5 [H-1/C-1], 7.33-7.27/130.4 [H$_{Ar}$-8’, 12’/C-8’,12’], 6.83-6.79/114.0 [H$_{Ar}$-9’,11’/C-9’-11’], 6.30/110.3 [H-6/C-6], 6.19/108.1 [H-5/C-5], 4.57/41.9 [H-CH$_2$Ar/C-6’], 3.91/44.1 [H$_{eq}$-3/C-3], 3.82/44.1 [H$_{ax}$-3/C-3], 3.76/55.3 [H-OCH$_3$/C-OCH$_3$], 3.70/55.1 [H$_{eq}$-3’/C-3], 2.84/36.3 [H$_{eq}$-4’/C-4’], 2.44/36.3 [H$_{eq}$-4’/C-4’]. HMBC Correlation [δ_H/[δ_C]: 7.36/108.1/110.3/152.3 [H-1/C-5/C-6/C-4], 7.33-7.27/41.9/114.0/159.4 [H$_{Ar}$-8’,12’/H-CH$_2$Ar/C-9’,11’/C-10’], 6.83-6.79 /127.8/130.4/159.4 [H$_{Ar}$-9’,11’/C-7’/C-8’,12’/C-10’], 6.30/108.1/142.5/152.3 [H-6/C-5/C-1/C-4], 6.19/110.3/142.5/152.3 [H-5/C-6/C-1/C-4], 4.57/127.8/130.4/174.9/177.5 [H-CH$_2$Ar/C-7/C-8’,12’/C-5’/C-2’], 3.91/55.1/108.1/152.3 [H$_{eq}$-3/C-3’/C-5/C-4], 3.82/55.1/108.1/152.3 [H$_{ax}$-3/C-3’/C-5/C-4], 3.79/159.4 [H-OCH$_3$/C-10’].

Puerto & Kouznetsov, Page SI-11
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

3.70/36.3/44.1/174.9/177.5 [H$_{eq}$-3'/C-4'/C-3/C-5'/C-2'], 2.84/55.1/174.9/177.5 [H$_{eq}$-4'/C-3'/C-5'/C-2'], 2.44/55.1/174.9/177.5 [H$_{ax}$-4'/C-3'/C-5'/C-2']. GC: $R_t = 25.98$ min.; MS (EI), m/z (%): 314 (M$^+$, 1), 297 (1), 162 (49), 96 (100), 81 (38), 53 (8). HRMS (ESI+): m/z: calcd for C$_{13}$H$_{19}$N$_2$O$_4$ (M+H$^+$) 315.1339, found: 315.1344; Calcd for C$_{13}$H$_{18}$N$_2$O$_4$Na (M+Na$^+$) 337.1159, found: 337.1155.

4-(N-(3,4-Methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6f): Purification by silica gel column chromatography afforded pure 6f as a yellow oil (460 mg, 1.40 mmol, 89 % yield). $R_f = 0.43$ (1:1 hexane/EtOAc); FT -IR (liquid film, cm$^{-1}$): 3317 (NH), 2900 (CH$_2$), 1697 (C=O), 1403 (CH$_2$), 1326 (HC=CH), 1249 (C-O-C). 1H NMR δ (400 MHz, CDCl$_3$): 7.36 (1H, dd, $J = 1.9$, 0.8 Hz, H-1), 6.86-6.82 (2H, m, HAr-8', 12'), 6.70 (1H, dd, $J = 7.7$, 0.6 Hz, H$_{Ar}$-11'), 6.30 (1H, dd, $J = 3.2$, 1.9 Hz, H-6), 6.19 (1H, dd, $J = 3.2$, 0.6 Hz, H-5), 5.91 (2H, s, -OCH$_2$O-), 4.52 (2H, s, H-CH$_2$Ar), 3.91 (1H, d, $J = 14.6$ Hz, H$_{eq}$-3), 3.82 (1H, d, $J = 14.6$ Hz, H$_{ax}$-3), 3.70 (1H, dd, $J = 8.3$, 5.0 Hz, H$_{eq}$-3'), 2.84 (1H, dd, $J = 17.9$, 8.3 Hz, H$_{eq}$-4'), 2.44 (1H, dd, $J = 17.9$, 5.0 Hz, H$_{ax}$-4'), 2.22 (1H, br.s., NH) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 177.3, 174.7, 152.1, 147.7, 147.3, 142.4 (+), 129.2, 122.5 (+), 110.3 (+), 109.4 (+), 108.2 (+), 108.0 (+), 101.1 (-), 55.0 (+), 44.1 (+), 42.2 (-), 36.2 (-) ppm. COSY Correlation [δ_H/δ_H]: 7.36/6.19 [H-1/H-5], 7.36/6.30 [H-1/H-6], 6.86-6.82/4.59 [H$_{Ar}$-8',12'/H-CH$_2$Ar], 6.86-6.82/6.70 [H$_{Ar}$-8',12'/H$_{Ar}$-11'], 6.30/6.19 [H-6/H-5], 6.19/3.91 [H-5/H$_{eq}$-3], 6.19/3.82 [H-5/H$_{ax}$-3], 3.70/2.44 [H$_{eq}$-3'/H$_{ax}$-4'], 3.70/2.84 [H$_{eq}$-3'/H$_{eq}$-4'], 2.84/2.44 [H$_{eq}$-4'/ H$_{eq}$-4']. HSQC Correlation [δ_H/δ_C]: 7.36/142.4[H-1/C-1], 6.86-6.82/109.4/122.59 [H$_{Ar}$-8',12'/C-8',12'], 6.70/108.2 [H-11'/C-11'], 6.30/110.3 [H-6/C-6], 6.19/108.0 [H-5/C-5], 5.91/101.1 [H-OCH$_2$O/C-OCH$_2$O], 4.52/42.2 [H-CH$_2$Ar/C-6'], 3.91/44.1 [H$_{eq}$-3/C-3], 3.82/44.1 [H$_{ax}$-3/C-3], 3.70/55.0 [H$_{eq}$-3'/C-3'], 2.84/36.2 [H$_{eq}$-4'/C-4'], 2.44/36.2 [H$_{ax}$-4'/C-4']. HMBC Correlation [δ_H/δ_C]: 7.36/108.0/110.3/152.1 [H-1/C-5/C-6/C-4], 6.86-6.82/122.5/109.4/147.37/147.75 [H$_{Ar}$-8',12'/C-6'/C-12'/C-8'/C-10'/C-9'], 6.70/109.4/129.2/147.3/147.75 [H-11'/C-12'/C-7'/C-10'/C-9'], 6.30/108.0/142.4/152.1 [H-6/C-5/C-1/C-4], 6.19/110.3/142.4/152.1 [H-5/C-6/C-1/C-4],5.91/147.3/147.7 [H-OCH$_2$O/C-10'/C-9],4.52/109.4/122.5/129.2/174.7/177.3[H-CH$_2$Ar/C-12'/C-8'/C-7'/C-5'/C-2'], 3.91/55.0/108.0/152.1 [H$_{eq}$-3/C-3'/C-5/C-4], 3.82/55.0/108.0/152.1 [H$_{ax}$-3/C-3'/C-5/C-4], 3.70/36.2/147.4/177.3 [H$_{eq}$-3'/C-4'/C-3/C-5'/C-2'], 2.84/55.0/174.7/177.3 [H$_{eq}$-4'/C-3'/C-5'/C-2'], 2.44/55.0/174.7/177.3 [H$_{ax}$-4'/C-3'/C-5'/C-2']. GC: $R_t = 27.55$ min.; MS (EI), m/z (%): 328 (M$^+$, 1), 311 (1), 135 (45), 96 (100), 81 (39), 77 (9), 53 (9). HRMS (ESI+): m/z: calcd for C$_{13}$H$_{19}$N$_2$O$_4$ (M+H$^+$) 329.1132, found: 329.1132; Calcd for C$_{13}$H$_{18}$N$_2$O$_4$Na (M+Na$^+$) 351.0951, found: 351.0945.

Puerto & Kouznetsov, Page SI-12
4-(N-(1-Naphthyl)-pyrrolidin-3-yl)-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6g):
Purification by silica gel column chromatography afforded pure 6g as a yellow oil (530 mg, 1.60 mmol, 95 % yield). Rf = 0.56 (1:1 hexane/EtOAc); FT-IR (liquid film, cm⁻¹): 3317 (NH), 3054 (=CArH), 1712 (C=O), 1511 (CAr=CAr), 1403 (CH2), 1342 (HC=CH). ¹H NMR δ (400 MHz, CDCl₃): 8.27 (1H, d, J = 8.4 Hz, H-14'), 7.85 (1H, d, J = 8.1 Hz, H-11'), 7.80 (1H, d, J = 8.3 Hz, H-10'), 7.56 (2H, ddd, J = 7.1, 4.9, 1.4 Hz, H-8' y 13'), 7.49 (1H, ddd, J = 8.0, 6.9, 1.1 Hz, H-12'), 7.41 (1H, dd, J = 8.1, 7.2 Hz, H-9'), 7.36 (1H, dd, J = 1.9, 0.8 Hz, H-1), 6.29 (1H, dd, J = 3.1, 1.9 Hz, H-6), 6.18 (1H, d, J = 3.2 Hz, H-5), 5.12 (2H, CH₂), 3.91 (1H, d, J = 14.6 Hz, Hør-3), 3.82 (1H, d, J = 14.6 Hz, Hax-3), 3.71 (1H, d, J = 17.9, 5.0 Hz, Hør-3'), 2.87 (1H, dd, J = 17.9, 8.3 Hz, Hør-4'), 2.49 (1H, dd, J = 17.9, 8.3 Hz, Hax-4'), 2.09 (1H, br.s., NH) ppm. ¹³C NMR δ (101 MHz, CDCl₃): 177.7, 175.0, 152.2, 142.5 (+), 133.8, 131.3, 130.5, 128.9 (+), 128.8 (+), 126.6 (+), 125.9 (+), 125.3 (+), 110.3 (+), 108.1 (+), 55.0 (+), 44.1 (-), 40.3 (-), 36.3 (-) ppm. COSY Correlation [δH/δH]: 8.27/7.56 [H-14'/H-13'], 7.85/7.49 [H-11'/H-12'], 7.80/7.41 [H-10'/H-9'], 7.56/6.12 [H-8'/H-CH₃], 7.56/7.41 [H-8'/H-9'], 7.56/7.49 [H-13'/H-12'], 7.36/6.18 [H-1/H-5], 7.36/6.29 [H-1/H-6], 6.29/6.18 [H-6/H-5], 3.91/3.82 [Hør-3/Hax-3], 3.71/2.49 [Hør-3'/Hax-4'], 3.71/2.87 [Hør-3'/Hax-4'], 2.87/2.49 [Hør-4'/Hax-4']. HSQC Correlation [δH/δC]: 8.27/123.5 [H-14'/C-14'], 7.85/128.8 [H-11'/C-11'], 7.80/128.9 [H-10'/C-10'], 7.56/126.6 [H-13'/C-13'], 7.56/127.8 [H-8'/C-8'], 7.49/125.9 [H-12'/C-12'], 7.41/125.3 [H-9'/C-9'], 7.36/142.5 [H-1/C-1], 6.29/110.3 [H-6/C-6], 6.18/108.1 [H-5/C-5], 5.12/40.3 [H-CH₂/C-6'], 3.91/44.1 [Hør-3/C-3], 3.82/44.1 [Hax-3/C-3], 3.71/55.0 [Hør-3'/C-3'], 2.87/36.3 [Hør-4'/C-4'], 2.49/36.3 [Hax-4'/C-4']. HMBC Correlation [δH/δC]: 8.27/125.9/130.5/133.8 [H-14'/C-12'/C-7'/C-14'], 7.85/126.6/131.3/133.8 [H-11'/C-13'/C-10'/C-14'], 7.80/127.8/131.3/133.8[H-10'/C-8'/C-10'/C-14'], 7.56/131.3 [H-8'/C-10'], 7.56/128.8/131.3 [H-13'/C-11'/C-10'/C-10'], 7.49/123.5/133.8 [H-12'/C-11'/C-14'/C-14'], 7.41/130.5/133.8 [H-9'/C-7'/C-14'], 6.29/108.1/142.5/152.2 [H-6/C-5/C-1/C-4], 6.18/110.3/142.5/152.2 [H-5/C-6/C-1/C-4], 5.12/127.8/130.5/175.0/177.7 [H-CH₂Ar/C-8'/C-7'/C-5'/C-2'], 3.91/55.0/108.1/152.2 [Hør-3/C-3'/C-5/C-4], 3.82/55.0/108.1/152.2 [Hax-3/C-3'/C-5/C-4], 3.71/36.3/44.1/175.0/177.7 [Hør-3'/C-4'/C-3'-C-5'/C-2'], 2.87/55.0/175.0/177.7 [Hør-4'/C-3'/C-5'/C-2'], 2.49/55.0/175.0/177.7 [Hax-4'/C-3'/C-5'/C-2']. GC: Rf = 31.01 min.; MS (EI), m/z (%): 334 (M⁺, 1), 317 (1), 141 (37), 115 (11), 96 (100), 81 (37), 53 (10). HRMS (ESI+): m/z: calcd for C₂₀H₁₈N₂O₃ (M+H⁺) 335.1390, found: 335.1385; Calcd for C₂₀H₁₈N₂O₃Na (M+Na⁺) 357.1210, found: 357.1214.
H_{3}BO_{3}-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

4-(S-(-)-N-(1-Phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6h): Purification by silica gel column chromatography afforded pure 6h as a yellow oil (510 mg, 1.71 mmol, 86 % yield). R_f = 0.56 (1:1 hexane/EtOAc); FT-IR (liquid film, cm^{-1}): 3317 (NH), 2977 (C=O), 1388 (HC=CH), 1187 (CH_{3}). ¹H NMR δ (400 MHz, CDCl_{3}): 7.42 (2H, d, J = 7.9 Hz, H_{Ar}-8', 12'), 7.36 (1H, d, J = 1.0 Hz, H-1), 7.33-7.23 (3H, m, H_{Ar}-9', 10', 11'), 6.30 (1H, dd, J = 3.1, 1.5 Hz, H-6), 6.19 (1H, d, J = 2.6 Hz, H-5), 5.43-5.35 (1H, m, H-6'), 3.90 (1H, dd, J = 14.8, 3.3 Hz, H_{eq}-3), 3.80 (1H, d, J = 14.5 Hz, H_{ax}-3), 3.64 (1H, ddd, J = 16.3, 8.3, 5.3 Hz, H_{eq}-3'), 2.80 (1H, dt, J = 17.7, 7.6 Hz, H_{eq}-4'), 2.47-2.37 (1H, m, H_{ax}-4'), 2.02 (1H, br.s., NH), 1.81-1.78 (3H, m, H-CH_{3}) ppm. ¹³C NMR δ (101 MHz, CDCl_{3}): 177.5, 174.9, 152.3, 142.5 (+), 139.5, 128.5 (2xCH, +), 127.9 (+), 127.6 (2xCH, +), 110.4 (+), 108.1 (+), 54.8 (+), 50.4 (+), 44.2 (-), 36.3 (-), 16.6 (+) ppm. GC: R_t = 23.39 min.; MS (EI), m/z (%): 298 (M⁺, 1), 281 (1), 106 (24), 98 (7), 96 (100), 81 (38), 77 (9), 53 (12). HRMS (ESI+): m/z: calcd for C_{17}H_{19}N_{2}O_{3} (M+H⁺) 299.1390, found: 299.1394; Calcd for C_{17}H_{18}N_{2}O_{3}Na (M+Na⁺) 321.1210, found: 321.1205.

4-(R-(+)-N-(1-Phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6i): Purification by silica gel column chromatography afforded pure 6i as a yellow oil (480 mg, 1.63 mmol, 82 % yield). R_f = 0.50 (1:1 hexane/EtOAc); FT-IR (liquid film, cm^{-1}): 3317 (NH), 2977 (CH_{3}), 1697 (C=O), 1388 (HC=CH), 1187 (CH_{3}). ¹H NMR δ (400 MHz, CDCl_{3}): 7.43-7.40 (2H, m, H_{Ar}-8', 12'), 7.36 (1H, td, J = 2.2, 0.8 Hz, H-1), 7.33-7.23 (3H, m, H_{Ar}-9', 10' and 11'), 6.30 (1H, dt, J = 3.4, 1.7 Hz, H-6), 6.19 (1H, d, J = 2.7 Hz, H-5), 5.39 (1H, qd, J = 7.4, 3.0 Hz, H-6'), 3.89 (1H, dd, J = 14.6, 3.2 Hz, H_{eq}-3), 3.80 (1H, dd, J = 14.6, 1.7 Hz, H_{ax}-3), 3.63 (1H, ddd, J = 17.7, 8.3, 5.3 Hz, H_{eq}-3'), 2.80 (1H, ddd, J = 17.8, 8.2, 7.4 Hz, H_{eq}-4'), 2.42 (1H, ddd, J = 17.9, 8.3, 5.2 Hz, H_{ax}-4'), 2.11 (1H, br.s., NH), 1.79 (3H, dd, J = 7.3, 2.7 Hz, H-CH_{3}) ppm. ¹³C NMR δ (101 MHz, CDCl_{3}): 177.5, 174.8, 152.1, 142.4 (+), 139.3, 128.4 (2xCH, +), 127.9 (+), 127.5 (2xCH, +), 110.3 (+), 108.0 (+), 54.7 (+), 50.4 (+), 44.1 (-), 36.2 (-), 16.5 (+) ppm. GC: R_t = 23.12 min.; MS (EI), m/z (%): 298 (M⁺, 1), 281 (1), 106 (25), 96 (100), 81 (46), 77 (9), 53 (12). HRMS (ESI+): m/z: calcd for C_{17}H_{19}N_{2}O_{3} (M+H⁺) 299.1390, found: 299.1394; Calcd for C_{17}H_{18}N_{2}O_{3}Na (M+Na⁺) 321.1210, found: 321.1205.

4-(1H-Pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6j): Compound 6j was obtained from commercial available maleimide 4j according to the procedure described in section 5. Purification by silica gel column chromatography afforded pure 6j as a yellow oil (372 mg, 1.91 mmol, 93 % yield). R_f = 0.35 (1:1 hexane/EtOAc); FT-IR (liquid film, cm^{-1}): 3409
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles

(NH-Maleimide), 3347 (NH-Bicycle), 3000 (CH$_2$), 1619 (C=O), 1581 (C-N), 1442 (CH$_2$), 1288 (HC=CH). 1H NMR δ (400 MHz, CDCl$_3$): 8.81 (1H, s, 1H, br.s., NH -Maleimide), 7.38 (1H, dd, $J = 1.9$, 0.8 Hz, H-1), 6.32 (1H, dd, $J = 3.2$, 1.9 Hz, H-6), 6.23 (1H, dd, $J = 3.2$, 0.7 Hz, H-5), 3.93 (1H, d, $J = 14.6$ Hz, H$_{eq}$-3), 3.84 (1H, d, $J = 14.6$ Hz, H$_{ax}$-3), 3.78 (1H, dd, $J = 8.3$, 5.3 Hz, H$_{eq}$-3$'$), 2.88 (1H, dd, $J = 18.1$, 8.3 Hz, H$_{eq}$-4$'$), 2.53 (1H, dd, $J = 18.1$, 5.3 Hz, H$_{ax}$-4$'$), 2.12 (1H, br.s., NH-Bicycle) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 178.2, 175.5, 152.1, 142.6 (+), 110.4 (+), 108.3 (+), 56.2 (+), 44.1 (-), 37.3 (-) ppm. GC: $R_t = 6.33$ min.; MS (EI), m/z (%): 194 (M$^+$, 1), 177 (2), 122 (4), 96 (100), 81 (74), 69 (8), 53 (22). HRMS (ESI+): m/z: calcd for C$_9$H$_{11}$N$_2$O$_3$ (M+H$^+$) 195.0764, found: 195.0768; Calcd for C$_9$H$_{10}$N$_2$O$_3$Na (M+Na$^+$) 217.0584, found: 217.0579.

4-(N-Phenyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene (6k): Compound 6k was obtained from commercial available N-phenylmaleimide 4k according to the procedure described in section 5. Purification by silica gel column chromatography afforded pure 6k as a white solid (910 mg, 3.36 mmol, 91 % yield). mp. 90-92 °C. $R_f = 0.39$ (1:1 hexane/EtOAc); FT-IR (KBr-disk cm$^{-1}$): 3286 (NH), 2 854 (C-H), 1 712 (C=O), 1403 (CH$_2$), 1 187 (HC=CH). 1H NMR δ (400 MHz, CDCl$_3$): 7.49-7.45 (2H, m, H Ar-7$'$ and 11$'$), 7.4-7.40 (1H, m, H Ar-9$'$), 7.39 (1H, dd, $J = 8.5$, 6.2 Hz, H-1), 7.28-7.25 (2H, m, H Ar-8$'$, 10$'$), 6.34 (1H, dd, $J = 3.1$, 1.9 Hz, H-6), 6.26 (1H, d, $J = 3.1$ Hz, H-5), 3.98 (1H, dd, $J = 14.6$ Hz, H$_{eq}$-3), 3.91 (1H, dd, $J = 8.3$, 5.2 Hz, H$_{ax}$-3$'$), 3.90 (1H, d, $J = 14.5$ Hz, H Ar-3), 3.04 (1H, dd, $J = 18.0$, 8.4 Hz, H$_{eq}$-4$'$), 2.66 (1H, dd, $J = 18.0$, 5.3 Hz, H Ar-4$'$), 2.41 (1H, br.s., NH) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 176.8, 174.2, 152.1, 142.6 (+), 131.5, 129.3 (2xCH, +), 126.4 (2xCH, +), 110.4 (+), 108.3 (+), 55.1 (+), 44.2 (-), 36.4 (-) ppm. GC: $R_t = 14.28$ min.; MS (EI), m/z (%): 270 (M$^+$, 1), 252 (1), 192 (32), 96 (100), 81 (25), 77 (48), 53 (17). HRMS (ESI+): m/z: calcd for C$_{15}$H$_{15}$N$_2$O$_3$ (M+H$^+$) 271.1077, found: 271.1074; Calcd for C$_{15}$H$_{14}$N$_2$O$_3$Na (M+Na$^+$) 293.0897, found: 293.0902.

6. General procedure for the synthesis of the N-(10-oxa-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamides 7a-7c
A solution of the corresponding maleimide 4b, 4j and 4k (1.95 mmol) in 10 mL of polyethyleneglycol 400 (PEG-400) was placed in a 50 mL Schlenk round-bottom flask heated at 90 °C and under positive nitrogen pressure, then boric acid (10 % mol) was added in one portion and after 20 min, N-acetyl furfurylamine 5b (2.34 mmol) were added over a few minutes in small portions; N-acetyl furfurylamine was easily prepared from commercial furfurylamine according to the described procedure.12 The reaction was monitored by TLC and after 3 hours the mixture was diluted with 50 mL of NaHCO₃ solution 1 M and the precipitated product was filtered off, washed with distilled water and then with ethyl acetate, finally the resulting solid was dried in vacuum to afford the desired products as stable solids.

N-(10-Oxa-1H-4-azatricyclo[5.2.1.0²,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide (7a): Compound 7a was obtained according to the procedure described above after filter, washing and drying the resulting precipitate, obtaining 7a as a white solid (336 mg, 1.42 mmol, 84 % yield). Rₕ = 0.42 (1:1 hexane/EtOAc); mp: 148-150 ºC; FT-IR (KBr disk, cm⁻¹): 3332 (NH-Maleimide and NH-Amide), 3023 (HC=CH), 1712 (C=O-Maleimide), 1650 (C=O-Amide), 1558 (C-N), 1430 (CH₃), 1187 (C-O-C). ¹H NMR δ (400 MHz, d₆-DMSO): 11.26 (1H, s, NH-Maleimide), 8.00 (1H, t, J = 5.2 Hz, NH-Amide), 6.53 (1H, d, J = 4.8 Hz, H-8), 6.30 (1H, d, J = 5.4 Hz, H-9), 3.95 (1H, dd, J = 14.6, 6.3 Hz, H-1), 3.34 (2H, d, J = 5.2 Hz, H-CH₂), 3.00 (1H, d, J = 6.3 Hz, H-2), 2.88 (1H, d, J = 6.2 Hz, H-6), 1.81 (3H, s, H-CH₃) ppm. ¹³C NMR δ (101 MHz, d₆-DMSO): 177.7, 176.5, 169.6, 137.8 (+), 137.4 (+), 137.4 (+), 90.5, 80.2 (+), 51.6 (+), 49.5 (+), 37.8 (-), 22.5 (+). HRMS (ESI+): m/z: calcd for C₁₁H₁₃N₂O₄ (M+H⁺) 237.0897, found: 237.0892; Calcd for C₁₁H₁₂N₂O₃Na (M+Na⁺) 259.0689, found: 259.0683.*

N-(4-(Phenyl)-10-oxa-4-azatricyclo[5.2.1.0²,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide (7b): Compound 7b was obtained according to the procedure described above after filter, washing and drying the precipitate, obtaining 7b as a white solid (474 mg, 1.52 mmol, 78 % yield). Rₕ = 0.27 (1:1 hexane/EtOAc); mp: 184-186 ºC; FT-IR (KBr disk, cm⁻¹): 3378 (NH), 3070 (HC=CH), 1712 (C=O-Maleimide), 1663 (C=O-Amide), 1527 (C-N), 1496 (CH₃), 1203 (C-O). ¹H NMR δ (400 MHz, d₆-DMSO): 8.08 (1H, t, J = 5.9 Hz, NH), 7.53-7.47 (2H, m, H₆Ar-2' and 6'), 7.45-7.40 (1H, m, H₆Ar-4'), 7.21 (2H, dt, J = 8.6, 2.0 Hz, H₆Ar-3' and 5'), 6.61 (1H, dd, J = 5.6, 1.2 Hz, H-8), 6.40 (1H, d, J = 5.7 Hz, H-9), 4.06 (1H, dd, J = 14.8, 6.7 Hz, H-1), 3.38 (2H, d, J = 5.2 Hz, CH₂), 3.23 (1H, d, J = 6.5 Hz, H-6), 3.12 (1H, d, J = 6.5 Hz, H-2), 1.83 (3H, s, H-CH₃) ppm. ¹³C NMR δ (101 MHz, d₆-DMSO): 175.5, 174.2, 169.6, 137.9 (+), 137.5 (+), 12 S. Naik, G. Bhattacharjya, B. Talukdar, B. K. Patel, *Eur. J. Org. Chem.*, 2004, 1254.
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

132.0, 129.0 (2xCH, +), 128.5 (+), 126.8 (2xCH, +), 90.8, 80.5 (+), 50.5 (+), 48.5 (+), 37.8 (-), 22.4 (+). HRMS (ESI+): m/z: calced for C$_{17}$H$_{17}$N$_2$O$_4$ (M+H$^+$) 313.1183, found: 313.1187; Caled for C$_{17}$H$_{16}$N$_2$O$_4$Na (M+Na$^+$) 335.1002, found: 335.1005.*

N-(4-(4-Chlorobenzyl)-10-oxa-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide (7c): Compound 7c was obtained according to the procedure described above after filter, washing and drying the precipitate, obtaining 7c as a white solid (637 mg, 1.76 mmol, 92 % yield). R$_f$ = 0.27 (1:1 hexane/EtOAc); mp: 205-207 ºC; FT -IR (KBr disk, cm$^{-1}$): 3317 (NH), 3085 (HC=CH), 1697 (C=O-Maleimide), 1650 (C=O-Amide), 1558 (C-N), 1496 (CH$_3$), 1295 (C-O), 863 (C-Cl). 1H NMR δ (400 MHz, CDCl$_3$): 7.28-7.21 (4H, m, H$_{Ar}$-2', 3', 5' and 6'), 6.49 (2H, s, H-8 and H-9), 6.22 (1H, t, J = 6.0 Hz, NH), 5.21 (2H, s, H-1), 4.59 (2H, s, H-CH$_2$Ar), 3.82 (2H, d, J = 6.2 Hz, H-CH$_2$NH), 2.99 (1H, d, J = 6.3 Hz, H-5), 2.87 (1H, d, J = 6.3 Hz, H-2), 1.99 (3H, s, H-CH$_3$) ppm. 13C NMR δ (101 MHz, CDCl$_3$): 175.5, 175.0, 170.4, 138.9 (+), 137.2 (+), 133.9, 133.8, 129.6 (2xCH, +), 128.9 (2xCH, +), 90.8, 80.8 (+), 50.3 (+), 48.4 (+), 41.9 (-), 38.6 (-), 23.3 (+) ppm. HRMS (ESI+): m/z: calced for C$_{18}$H$_{18}$ClN$_2$O$_3$ (M+H$^+$) 361.0950, found: 361.0947; Caled for C$_{18}$H$_{17}$ClN$_2$O$_3$Na (M+Na$^+$) 383.0769, found: 383.0772.*

7. In vitro acetylcholinesterase inhibitory activity essay for compounds 6a-6k and 7a-7c

To assess the inhibitory activity of the compounds toward AChE, we followed the spectrophotometric method described by Ellman13 and adapted in our laboratory with some modifications.14 The colorimetric reaction was performed in a 96 well plates using purified AChE from Electrophorus electricus (type V-S). Inhibition curves were made by preincubating for 30 min 50 μL of a solution of each compound (twelve different concentrations were tested) in phosphate-buffered solution (PBS), at pH 7.5, and 50 μL of a enzymatic solution containing 0.25 U/mL of AChE. After this preincubation period, 100 μL of a substrate solution (0.24 mM of 5,5’-dithiobis-2-nitrobenzoic acid (DTNB), 0.04 M of Na$_2$HPO$_4$ and 0.24 mM of acetylthiocholine iodide in distilled water) were added, allowing 5 min more of incubation, where the DTNB produces the yellow anion 5-thio-2-nitrobenzoic acid along with the enzymatic degradation of acetylthiocholine. Changes in absorbance were detected using a multiwell spectrophotometer (VERSAmax™, Molecular Devices) at 412 nm. Compounds inhibiting the AChE activity would reduce the color generation and it intensity; thus, IC values were calculated

*Not detected trough GC-MS due to the retro-Diels-Alder reaction in the vaporization chamber. Only the N-acetyl furfurylamine and the respective maleimide were registered using this technique.

Puerto & Kouznetsov, Page SI-17
as the concentration of compound that produces 50 % of AChE activity inhibition. Data are expressed as the standard error of the mean (SEM) of at least three different experiments in duplicate (Table SI1).

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC<sub>50</sub> (mM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>0.233 ± 0.003</td>
<td></td>
</tr>
<tr>
<td>6b</td>
<td>0.200 ± 0.004</td>
<td></td>
</tr>
<tr>
<td>6c</td>
<td>0.267 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>6d</td>
<td>0.315 ± 0.014</td>
<td></td>
</tr>
<tr>
<td>6e</td>
<td>0.293 ± 0.004</td>
<td></td>
</tr>
<tr>
<td>6f</td>
<td>0.235 ± 0.011</td>
<td></td>
</tr>
<tr>
<td>6g</td>
<td>0.279 ± 0.015</td>
<td></td>
</tr>
<tr>
<td>6h</td>
<td>0.249 ± 0.012</td>
<td></td>
</tr>
<tr>
<td>6i</td>
<td>0.262 ± 0.012</td>
<td></td>
</tr>
<tr>
<td>6j</td>
<td>0.302 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>6k</td>
<td>0.419 ± 0.026</td>
<td></td>
</tr>
<tr>
<td>7a</td>
<td>0.236 ± 0.006</td>
<td></td>
</tr>
<tr>
<td>7b</td>
<td>0.287 ± 0.009</td>
<td></td>
</tr>
<tr>
<td>7c</td>
<td>0.212 ± 0.008</td>
<td></td>
</tr>
<tr>
<td>Physostigmine</td>
<td>0.173 ± 0.009<sup>b</sup></td>
<td></td>
</tr>
</tbody>
</table>

^a IC₅₀ values are the mean ± SEM of at least three different experiments in duplicate. ^b IC₅₀ values are expressed in μM.

8. Toxicity Assessment in Vivo using zebrafish embryos for compounds 6a-6k and 7a-7c

Wild-type adult zebrafish of both sexes were obtained from a pet shop and were separated in two tanks (30 L each), according to their gender, at 26±2 °C under natural light-dark photoperiods. The fish were feed twice daily and the water quality was recorded weekly, in order to acclimate the animals for at least two weeks before experiments begin. For the reproduction of the adult fishes, small breeding tanks were set up in the evening previous to experiment, each containing three males and one female specimen. The tanks were isolated until next morning when the lights switch on and the natural mating occurs, without any perturbation. The embryos were collected, pooled and washed with E3 medium and examined to discarded dead, delayed, malformed and unfertilized embryos, while the adult fish were returned to their corresponding tank. The selected embryos were distributed in 96-well plates as appropriate to the screen, three embryos per well (embryonic plates). Compounds 6a-6k and 7a-7c were diluted into the E3 screening medium with 2% V/V of DMSO and aliquots of 200 μL were prepared at concentrations ranging from 200 μM to 5 μM (source plates). The surrounding medium was carefully removed from the embryonic plates using an 8-multichannel pipette and then the appropriate chemical aliquot of each compound (200 μL), from the source plate, were added into the corresponding well of the embryonic plate. Eight controls wells were used peer plate, each containing E3 medium with 2% V/V of DMSO. The embryonic plates were incubated at 28 °C.
and examined at 24, 48, 72 and 96 hours post-fertilization (hpf) by a OPTIKA zoom stereo microscope (trinocular version of model SZM-1) Figure 1. The Ethics and Research Committee of the Heart Institute of Bucaramanga approved the protocol under the Acta Number 050 of May 26 of 2012.

Fig. 1 A: Zebrafish embryos treated with compound 6g at 72 hpf. The embryos treated at 100, 150 and 200 μM died after chemical exposure at this time. The main visual phenotype, to measure the development delay at this stage, was when the eggs hatch and the alevins could be photographed. At 80 μM after 72 hpf, the eggs have not hatched at the same rate than the control did and the digestive damage could be observed at 60 μM. **B:** Zebrafish embryos treated with compound 6g at 96 hpf. Embryos treated at 80 μM finally died after 96 hpf. Head–trunk angle (red dotted line) 134.4° (control angle: 148°) at 60 μM indicating several development delay. The yellow dotted line, indicates that the embryos treated with 60 μM and below, did not consume their yolk at the same rate to the control fish, putting in evidence the digestive damage (DD) induced by the 7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.

9. Copies of GC, 1H NMR, 13C NMR, DEPT-135, COSY, 13C HMBC and HSQC charts of the synthesized 7-Oxa-2-azabicycles
Figure SI1. Chromatogram of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.
Figure SI2. 1H-NMR spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.

Figure SI3. 13C-NMR spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.
Figure SI 4. DEPT-135 spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.

Figure SI 5. COSY spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.
Figure S16. HSQC spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.

![HSQC spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.](image)

Figure S17. HMBC spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.

![HMBC spectrum of 4-(N-benzyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6a.](image)
Figure SI8. Chromatogram of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.
Figure S19. 1H-NMR spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.

Figure S10. 13C-NMR spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.
Figure SI11. DEPT-135 spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.

![DEPT-135 spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.](image1)

Figure SI12. COSY spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.

![COSY spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.](image2)
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles

Figure SI13. HSQC spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.

Figure SI14. HMBC spectrum of 4-(N-(4-chlorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6b.
Figure SI15. Chromatogram of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles

Figure SI16. 1H-NMR spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.

![1H-NMR spectrum](image)

Figure SI17. 13C-NMR spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.

![13C-NMR spectrum](image)
Figure SI18. DEPT-135 spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.

Figure SI19. COSY spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.
Figure S120. HSQC spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.

Figure S121. HMBC spectrum of 4-(N-(4-fluorobenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6c.
Figure SI22. Chromatogram of 4-(N-(4-methylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6d.
Figure S123. 1H-NMR spectrum of 4-(N-(4-methylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6d.

Figure S124. 13C-NMR spectrum of 4-(N-(4-methylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6d.
Figure S125. DEPT-135 spectrum of 4-(N-(4-methylbenzyl)-pyrrolidin-3-yl)-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6d.
Figure S126. Chromatogram of 4-(N-(4-methoxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.
Figure S127. 1H-NMR spectrum of 4-(N-(4-methoxyphenyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.

Figure S128. 13C-NMR spectrum of 4-(N-(4-methoxyphenyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.
Figure SI29. DEPT-135 spectrum of 4-(N-(4-methoxylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.

Figure SI30. COSY spectrum of 4-(N-(4-methoxylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.
Figure SI 31. HSQC spectrum of 4-(N-(4-methoxylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.

Figure SI 32. HMBC spectrum of 4-(N-(4-methoxylbenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6e.
Figure SI33. Chromatogram of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.
Figure S134. 1H-NMR spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.

Figure S135. 13C-NMR spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

Figure SI36. DEPT-135 spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.

Figure SI37. COSY spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.
Figure S138. HSQC spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.

Figure S139. HMBC spectrum of 4-(N-(3,4-methylenedioxybenzyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6f.
Figure SI40. Chromatogram of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.
Figure SI 41. 1H-NMR spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.

![1H-NMR spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.](image)

Figure SI 42. 13C-NMR spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.

![13C-NMR spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.](image)
Figure SI43. DEPT-135 spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.

Figure SI44. COSY spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.
Figure S145. HSQC spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.

Figure S146. HMBC spectrum of 4-(N-(1-naphthyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6g.
Figure SI47. Chromatogram of 4-(S-()-N-(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6h.
Figure SI48. 1H-NMR spectrum of 4-(S-(-))-N-(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6h.

Figure SI49. 13C-NMR spectrum of 4-(S-(-))-N-(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6h.
Figure S150. DEPT-135 spectrum of 4-(S(-)-N-(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6h.
Figure S151. Chromatogram of 4-(R-+(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6i.
H$_3$BO$_3$-Catalyzed the Unexpected Synthesis of 7-Oxa-2-azabicycles Electr. Supporting Information

Figure S152. 1H-NMR spectrum of 4-(R-(+)-N-(1-phenylethyl)-pyrrolidin-3-yl)-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6i.

Figure S153. 13C-NMR spectrum of 4-(R-(+)-N-(1-phenylethyl)-pyrrolidin-3-yl)-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6i.
Figure SI54. DEPT-135 spectrum of 4-(R-(+)-N-(1-phenylethyl)-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6i.

Figure SI55. 1H-NMR spectrum of 4-(1H-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6j.
Figure S156. 13C-NMR spectrum of 4-(1H-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6j.

Figure S157. DEPT-135 spectrum of 4-(1H-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6j.
Figure S158. 1H-NMR spectrum of 4-(N-phenyl-pyrroli din-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6k.

Figure S159. 13C-NMR spectrum of 4-(N-phenyl-pyroli din-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6k.
Figure S160. DEPT-135 spectrum of 4-(N-phenyl-pyrrolidin-3-yl-2,5-dione)-7-oxa-2-azabicyclo[2.2.1]hept-5-ene 6k.

Figure S161. 1H-NMR spectrum of N-(10-oxa-1H-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7a.
Figure S162. 13C-NMR spectrum N-(10-oxa-1H-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7a.

Figure S163. DEPT-135 spectrum of N-(10-oxa-1H-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7a.
Figure S164. 1H-NMR spectrum of N-(10-oxa-4-phenyl-4-azatricyclo[5.2.1.0$_2^6$]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7b.

Figure S165. 13C-NMR spectrum of N-(10-oxa-4-phenyl-4-azatricyclo[5.2.1.0$_2^6$]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7b.
Figure S166. DEPT-135 spectrum of \(N\)-(10-oxa-4-phenyl-4-azatricyclo[5.2.1.0\(^2\,6\)]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7b.

Figure S167. \(^1\)H-NMR spectrum of \(N\)-(4-(4-chlorobenzyl)-10-oxa-4-azatricyclo[5.2.1.0\(^2\,6\)]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7c.
Figure S168. 13C-NMR spectrum of N-(4-(4-chlorobenzyl)-10-oxa-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7c.

Figure S169. DEPT-135 spectrum of N-(4-(4-chlorobenzyl)-10-oxa-4-azatricyclo[5.2.1.02,6]decan-8-ene-3,5-dione-7-ylmethyl)acetamide 7c.