ELECTRONIC SUPPLEMENTARY INFORMATION

Synthesis of sterically encumbered C10-arylated benzo[h]quinolines using ortho-substituted aryl boronic acids

Marko Weimar and Matthew J. Fuchter*

Imperial College London, South Kensington Campus, Department of Chemistry, London SW7 2AZ, United Kingdom
E-mail: m.fuchter@imperial.ac.uk

Materials and Methods ... 1
Experimental Data .. 2
Experimental Procedures and Compound Characterisation .. 2
Suzuki-Miyaura cross-coupling reaction with Pd(PPh₃)₄ and p-benzoquinone 2
General procedure for the initial screening of reaction conditions .. 2
General procedure for the optimisation studies with o-tolylboronic acid 2a 3
General procedure for the cross-coupling reaction of 10-chlorobenzo[h]quinoline 1b with sterically hindered boronic acids 2a-k ... 3

10-ortho-Tolylbenzo[h]quinoline (3a) .. 4
10-(2’-Methoxyphenyl)benzo[h]quinoline (3b) .. 5
10-(2-(Trifluoromethyl)phenyl)benzo[h]quinoline (3c) ... 5
10-(2-Chlorophenyl)benzo[h]quinoline (3d) .. 6
10-(2-Bromophenyl)benzo[h]quinoline (3e) .. 6
Methyl 2-(benzo[h]quinolin-10-yl)benzoate (3f) .. 7
10-(2,5-Dimethylphenyl)benzo[h]quinoline (3g) ... 7
10-(2,6-Dimethylphenyl)benzo[h]quinoline (3h) ... 8
10-(Naphthalen-1'-yl)benzo[h]quinoline (3i) ... 8
10-(2'-Methoxynaphthalen-1'-yl)benzo[h]quinoline (3j) .. 9
10-(2'-Methylnaphthalen-1'-yl)benzo[h]quinoline (3k) .. 9

Gram scale synthesis of 10-(2'-methoxynaphthalen-1'-yl)benzo[h]quinoline 3j 10

Spectroscopic Data ... 11
Materials and Methods

All reagents and solvents were supplied from commercial sources (Sigma-Aldrich and Alfa Aesar) and used as received unless otherwise stated. THF was distilled from Na/benzophenone. Reactions requiring anhydrous conditions were conducted in flame-dried glassware under dry N2.

Reactions were monitored by analytical thin-layer chromatography (TLC) performed on E. Merck silica gel 60 F254 plates (0.25 mm). TLC plates were visualized using UV light (254 nm). Purification of compounds was achieved by column chromatography using Merck Flash Silica Gel 60 (230-400 mesh). Solvents were removed by rotary evaporation and compounds further dried under vacuum.

1H and 13C NMR spectra were recorded on a Bruker Advance 400 spectrometer at 400 MHz. Chemical shifts (δ H) are quoted in ppm (parts per million) and referenced to CDCl3 residual chloroform signal 1H δ = 7.26, 13C δ = 77.0.

10-Bromobenzo[h]quinoline and 10-chlorobenzo[h]quinoline were prepared according to a literature procedure.\(^1\)

Experimental Data

Experimental Procedures and Compound Characterisation

Suzuki-Miyaura cross-coupling reaction with Pd(PPh3)4 and p-benzoquinone

![Chemical structure](image)

To a degassed solution of 10-bromobenzoflquinoline (245 mg, 0.95 mmol) and CsF (288 mg, 1.90 mmol, 2.0 equiv) in dioxane/H2O 2:1 (7.5 ml) were added Pd(PPh3)4 (110 mg, 0.095 mmol, 0.1 equiv) and o-tolylboronic acid (136 mg, 1.00 mmol, 1.05 equiv). The yellow suspension was treated with p-benzoquinone (10 mg) (red solution), heated to reflux and when the solution turned yellow again treated with more p-benzoquinone (41 mg, 51 mg in total, 0.475 mmol, 0.5 equiv). After 2 h at reflux the mixture was cooled to rt followed by extractive work-up with Et2O. Column chromatography on silica gel twice (petroleum ether/EtOAc 20:1) afforded 3a (171 mg, 67 %) as colourless oil. For compound characterisation, see later.

General procedure for the initial screening of reaction conditions

![Chemical structure](image)

10-Bromobenzoflquinoline (0.2 mmol) was dissolved in dioxane/H2O 2:1 (1.5 ml). After the addition of CsF (0.4 mmol, 2.0 equiv), the palladium source (0.02 mmol, 0.1 equiv), P(O)Ph3 (0.04 mmol, 0.2 equiv), and o-toluylboronic acid (0.21 mmol, 1.05 equiv) it was stirred at 100 °C for the time indicated. After cooling to rt it was diluted with Et2O (5 ml), filtered over MgSO4, evaporated and the conversion determined by NMR based on the ratio 1a/3a present in the crude mixture.
General procedure for the optimisation studies with \(\text{o-tolylboronic acid} \ 2a \)

10-Halobenzo[\(h \)]quinoline (0.1 mmol) was dissolved in the appropriate solvent (0.5 ml) or solvent mixture (0.75 ml). After the addition of the adequate base (0.4 mmol, 2.0 equiv), catalyst (0.02 mmol, 0.1 equiv), \(\text{P(O)Ph}_3 \) (0.04 mmol, 0.2 equiv), and \(\text{o-tolylboronic acid} \) (0.21 mmol, 1.05 equiv) it was stirred at ambient temperature for the time indicated. It was then diluted with \(\text{Et}_2\text{O} \) (5 ml), filtered over MgSO\(_4\), evaporated and 3a isolated by flash chromatography on silica gel (petroleum ether/EtOAc 50:1).

Table S1. Results of the optimization studies with 10-chlorobenzo[\(h \)]quinoline not shown in the article

<table>
<thead>
<tr>
<th>X</th>
<th>Catalyst/Additive</th>
<th>Base</th>
<th>Solvent</th>
<th>Time [h]</th>
<th>NMR Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br</td>
<td>(\text{PdCl}_2/\text{P(O)Ph}_3)</td>
<td>(\text{K}_2\text{PO}_4)</td>
<td>dioxane/H(_2\text{O}) 2:1</td>
<td>18</td>
<td>43 %</td>
</tr>
<tr>
<td>Br</td>
<td>(\text{PdCl}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>dioxane/H(_2\text{O}) 2:1</td>
<td>18</td>
<td>72 %</td>
</tr>
<tr>
<td>Br</td>
<td>(\text{PdCl}_2/\text{P(O)Ph}_3)</td>
<td>(\text{NaOH})</td>
<td>dioxane/H(_2\text{O}) 2:1</td>
<td>18</td>
<td>76 %</td>
</tr>
<tr>
<td>Br</td>
<td>(\text{PdCl}_2/\text{P(O)Ph}_3)</td>
<td>(\text{CsF})</td>
<td>dioxane/H(_2\text{O}) 2:1</td>
<td>18</td>
<td>99 %</td>
</tr>
<tr>
<td>Br</td>
<td>(\text{Pd(OAc)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>dioxane/H(_2\text{O}) 2:1</td>
<td>1.5</td>
<td>88 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(OAc)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>DMF</td>
<td>18</td>
<td>23 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(OAc)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>THF</td>
<td>18</td>
<td>33 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(OAc)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>THF/1 drop H(_2\text{O})</td>
<td>18</td>
<td>68 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(dba)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>dioxane</td>
<td>18</td>
<td>13 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(dba)}_2)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>dioxane</td>
<td>18</td>
<td>12 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(dba)}_2)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>THF</td>
<td>18</td>
<td>12 %</td>
</tr>
<tr>
<td>Cl</td>
<td>(\text{Pd(dba)}_2/\text{P(O)Ph}_3)</td>
<td>(\text{Na}_2\text{CO}_3)</td>
<td>MeOH</td>
<td>18</td>
<td>16 %</td>
</tr>
</tbody>
</table>

* As conversion determined by NMR based on the ratio 1a or 1b to 3a present in the crude mixture.

General procedure for the cross-coupling reaction of 10-chlorobenzo[\(h \)]quinoline 1b with sterically hindered boronic acids 2a-k

10-Chlorobenzo[\(h \)]quinoline (21.4 mg, 0.1 mmol) was dissolved in the appropriate solvent (0.5 ml THF or 0.75 ml dioxane/H\(_2\text{O} \) 2:1). After the addition of the adequate base (0.24
mmol, 2.4 equiv), Pd(OAc)$_2$ (2.25 mg, 0.01 mmol, 0.1 equiv), P(O)Ph$_3$ (5.57 mg, 0.02 mmol, 0.2 equiv), and boronic acid (0.12 mmol, 1.2 equiv) it was stirred at the corresponding temperature for the time indicated. It was then diluted with Et$_2$O (2.5 ml), filtered over MgSO$_4$, evaporated and the coupling product isolated by flash chromatography on silica gel (petroleum ether/EtOAc 50:1).

Table S2. Results not shown in the article

<table>
<thead>
<tr>
<th>Boronic Acid</th>
<th>Solvent</th>
<th>Base</th>
<th>T [°C]</th>
<th>Time [h]</th>
<th>Isolated Yield [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(OH)$_2$</td>
<td>THF</td>
<td>Na$_2$CO$_3$</td>
<td>rt</td>
<td>18</td>
<td>5a</td>
</tr>
<tr>
<td></td>
<td>dioxane/H$_2$O 2:1</td>
<td>Na$_2$CO$_3$</td>
<td>rt</td>
<td>18</td>
<td>100a</td>
</tr>
<tr>
<td></td>
<td>dioxane/H$_2$O 2:1</td>
<td>CsF</td>
<td>100</td>
<td>1</td>
<td>89</td>
</tr>
<tr>
<td></td>
<td>dioxane/H$_2$O 2:1</td>
<td>CsF</td>
<td>rt</td>
<td>18</td>
<td>99</td>
</tr>
<tr>
<td>B(OH)$_2$</td>
<td>THF</td>
<td>Na$_2$CO$_3$</td>
<td>rt</td>
<td>18</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>THF</td>
<td>Na$_2$CO$_3$</td>
<td>rt</td>
<td>18</td>
<td>60</td>
</tr>
</tbody>
</table>

a NMR yield as conversion determined by NMR based on the ratio 1a to 3 present in the crude mixture.

10-o-Tolylbenzo[h]quinoline (3a)2

![10-o-Tolylbenzo[h]quinoline (3a)2](image)

The reaction in dioxane/H$_2$O 2:1 as solvent, with CsF as base, and o-tolylboronic acid (14.3 mg) at ambient temperature for 0.5 h afforded the title compound (26.9 mg, 100 %) as colourless oil. IR (film): ν 3046, 2922, 1589, 1418, 837, 754, 732, 622 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.44 (dd, J = 4.3, 1.9 Hz, 1 H), 8.08 (dd, J = 8.0, 1.9 Hz, 1 H), 7.96 (dd, J = 7.9, 1.3 Hz, 1 H), 7.89 (d, J = 8.8 Hz, 1 H), 7.72 (dd, J = 7.9, 7.2 Hz, 1 H), 7.70 (d, J = 8.8 Hz, 1 H), 7.50 (dd, J = 7.2, 1.3 Hz, 1 H), 7.35-7.26 (m, 4 H), 7.23-7.19 (m, 1 H), 1.88 (s, 3
H. 1C NMR (100 MHz, CDCl$_3$): δ 147.41, 146.96, 146.39, 140.96, 135.83, 135.01, 134.58, 130.66, 129.38, 128.67, 128.37, 127.83 (2 C), 127.19, 126.88, 125.86, 125.78, 125.06, 120.91, 20.18. HRMS-ESI (m/z): Calcd for [C$_{20}$H$_{15}$N + H]$^+$, 270.1283. Found, 270.1283.

10-(2'-Methoxyphenyl)benzo[h]quinoline (3b)2,3

The reaction in dioxane/H$_2$O 2:1 as solvent, with CsF as base, and 2-methoxyphenylboronic acid (18.2 mg) at ambient temperature for 18 h afforded the title compound (21.1 mg, 74 %) as colourless oil. IR (film): ν 3046, 2932, 2831, 1621, 1590, 1073, 836, 729 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.43 (dd, J = 4.3, 1.9 Hz, 1 H), 8.07 (dd, J = 8.0, 1.9 Hz, 1 H), 7.93 (dd, J = 7.9, 1.3 Hz, 1 H), 7.86 (d, J = 8.8 Hz, 1 H), 7.71 (dd, J = 7.9, 7.3 Hz, 1 H), 7.68 (d, J = 8.8 Hz, 1 H), 7.55 (dd, J = 7.3, 1.3 Hz, 1 H), 7.38 (dd, J = 8.1, 7.5, 1.7 Hz, 1 H), 7.31 (dd, J = 8.0, 4.3 Hz, 1 H), 7.28 (dd, J = 7.3, 1.7 Hz, 1 H), 7.07 (td, J = 7.3, 1.0 Hz, 1 H), 6.92 (dd, J = 8.1, 1.0 Hz, 1 H), 3.43 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 157.45, 147.24, 146.95, 137.87, 136.03, 134.96, 134.50, 131.22, 129.73, 129.00, 128.40, 128.08, 127.73, 127.22, 126.74, 125.67, 120.83, 120.18, 109.81, 55.33. HRMS-ESI (m/z): Calcd for [C$_{20}$H$_{15}$NO + H]$^+$, 286.1232. Found, 286.1228.

10-(2-(Trifluoromethyl)phenyl)benzo[h]quinoline (3c)

The reaction in dioxane/H$_2$O 2:1 as solvent, with CsF as base, and 2-(trifluoromethyl)phenylboronic acid (22.8 mg) at ambient temperature for 18 h afforded the title compound (32.3 mg, 100 %) as white solid. Mp: 68-69 °C. IR (film): ν 3050, 1316, 1167, 1121, 837, 732 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.34 (dd, J = 4.3, 1.8 Hz, 1 H), 8.06 (dd, J = 8.0, 1.8 Hz, 1 H), 7.99 (dd, J = 7.9, 1.2 Hz, 1 H), 7.87 (d, J = 8.8 Hz, 1 H), 7.79 (br d, J =
7.3 Hz, 1 H), 7.73-7.68 (m, 2 H), 7.57-7.47 (m, 3 H), 7.28 (dd, J = 8.0, 4.3 Hz, 1 H), 7.26 (br d, J = 7.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ 147.00, 146.48, 145.10, 138.00, 135.02, 134.35, 130.59, 130.51, 130.39, 129.45, 128.46, 128.10, 127.64 (q, J = 29.6 Hz), 127.12, 126.42, 125.93, 125.79, 125.41 (q, J = 4.9 Hz), 123.18, 120.87. 19F NMR (300 MHz, CDCl3): δ -58.99. HRMS-ESI (m/z): Calcd for [C20H12F3N + H]+, 324.1000. Found, 324.1001.

10-(2-Chlorophenyl)benzo[h]quinoline (3d)

The reaction in dioxane/H2O 2:1 as solvent, with CsF as base, and 2-chlorophenylboronic acid (18.8 mg) at ambient temperature for 10 min. afforded the title compound (27.0 mg, 93 %) as colourless oil. IR (film): ν 3048, 1419, 1036, 753, 730, 618 cm⁻¹. 1H NMR (400 MHz, CDCl3): δ 8.43 (dd, J = 4.3, 1.9 Hz, 1 H), 8.09 (dd, J = 8.0, 1.9 Hz, 1 H), 7.99 (dd, J = 8.0, 1.3 Hz, 1 H), 7.88 (d, J = 8.8 Hz, 1 H), 7.73 (dd, J = 7.9, 7.2 Hz, 1 H), 7.71 (d, J = 8.8 Hz, 1 H), 7.50 (dd, J = 7.2, 1.3 Hz, 1 H), 7.47-7.44 (m, 1 H), 7.38-7.30 (m, 4 H). 13C NMR (100 MHz, CDCl3): δ 147.38, 146.68, 145.33, 138.38, 135.12, 134.49, 133.41, 130.63, 129.72, 129.39, 128.56, 128.36, 128.23, 127.12 (2 C), 126.93, 126.12, 125.96, 121.10. HRMS-ESI (m/z): Calcd for [C20H12ClN + H]+, 290.0737. Found, 290.0749.

10-(2-Bromophenyl)benzo[h]quinoline (3e)

The reaction in dioxane/H2O 2:1 as solvent, with CsF as base, and 2-bromophenylboronic acid (24.1 mg) at ambient temperature for 2 min. afforded the title compound (33.1 mg, 99 %) as pale yellow solid. Mp: 74-76 °C. IR (film): ν 3051, 1588, 1511, 1419, 1020, 832, 755, 731, 619 cm⁻¹. 1H NMR (400 MHz, CDCl3): δ 8.44 (dd, J = 4.2, 1.7 Hz, 1 H), 8.09 (dd, J = 8.0, 1.7 Hz, 1 H), 8.00 (dd, J = 7.9, 0.8 Hz, 1 H), 7.88 (d, J = 8.8 Hz, 1 H), 7.74 (t, J = 7.5 Hz, 1 H),
7.71 (d, J = 8.8 Hz, 1 H), 7.66 (dd, J = 7.9, 0.8 Hz, 1 H), 7.48 (dd, J = 7.2, 1.0 Hz, 1 H), 7.40 (td, J = 7.4, 1.0 Hz, 1 H), 7.33 (dd, J = 8.0, 4.2 Hz, 1 H), 7.32 (dd, J = 7.5, 1.7 Hz, 1 H), 7.28-7.23 (m, 1 H). 13C NMR (100 MHz, CDCl₃): δ 147.36, 147.23, 146.56, 140.01, 135.11, 134.44, 131.52, 130.51, 129.68, 129.19, 128.52, 128.21, 127.22, 127.09, 126.91, 126.69, 125.96, 123.90, 121.08. HRMS-ESI (m/z): Calcd for [C₂₀H₁₂BrN + H]⁺, 334.0231. Found, 334.0229.

Methyl 2-(benzo[h]quinolin-10-yl)benzoate (3f)

![Methyl 2-(benzo[h]quinolin-10-yl)benzoate (3f)](image)

The reaction in THF as solvent, with Na₂CO₃ as base, and 2-(methoxycarbonyl)phenylboronic acid (21.6 mg) at 60 °C for 18 h afforded the title compound (16.0 mg, 51 %) as colourless oil. IR (film): ν 3047, 2958, 1726, 1293, 1252, 837, 732 cm⁻¹. 1H NMR (400 MHz, CDCl₃): δ 8.36 (dd, J = 4.3, 1.8 Hz, 1 H), 8.09-8.04 (m, 2 H), 7.94 (dd, J = 7.9, 1.2 Hz, 1 H), 7.87 (d, J = 8.8 Hz, 1 H), 7.70 (dd, J = 7.9, 7.3 Hz, 1 H), 7.67 (d, J = 8.8 Hz, 1 H), 7.55 (td, J = 7.5, 1.4 Hz, 1 H), 7.47-7.42 (m, 2 H), 7.30-7.24 (m, 2 H), 3.27 (s, 3 H). 13C NMR (100 MHz, CDCl₃): δ 167.73, 147.98, 146.99, 146.69, 141.29, 135.10, 134.30, 131.32, 130.02, 129.75, 129.57, 129.42, 129.13, 128.39, 127.75, 126.92 (2 C), 125.83, 125.59, 120.81, 51.23. HRMS-ESI (m/z): Calcd for [C₂₁H₁₅NO₂ + H]⁺, 314.1181. Found, 314.1186.

10-(2,5-Dimethylphenyl)benzo[h]quinoline (3g)

![10-(2,5-Dimethylphenyl)benzo[h]quinoline (3g)](image)

The reaction in dioxane/H₂O 2:1 as solvent, with CsF as base, and 2,5-dimethylphenylboronic acid (18.0 mg) at ambient temperature for 0.5 h afforded the title compound (28.3 mg, 100 %) as colourless oil. IR (film): ν 3044, 2918, 1589, 1568, 1511, 1422, 836, 809, 742, 724, 629 cm⁻¹. 1H NMR (400 MHz, CDCl₃): δ 8.45 (dd, J = 4.3, 1.9 Hz, 1 H), 8.08 (dd, J = 8.0, 1.9 Hz,
1 H), 7.94 (dd, \(J = 7.9, 1.3 \) Hz, 1 H), 7.87 (d, \(J = 8.8 \) Hz, 1 H), 7.73-7.68 (m, 2 H), 7.47 (dd, \(J = 7.2, 1.3 \) Hz, 1 H), 7.32 (dd, \(J = 8.0, 4.3 \) Hz, 1 H) 7.15-7.09 (m, 2 H), 7.03 (br s, 1 H), 2.38 (s, 3 H), 1.79 (s, 3 H). 13C NMR (100 MHz, CDCl3): \(\delta\) 147.44, 147.00, 146.18, 141.15, 134.99, 134.56, 134.29, 132.76, 130.81, 129.43, 128.61, 128.50, 128.41, 127.76, 127.18, 126.87, 126.48, 125.73, 120.91, 21.15, 19.67. HRMS-ESI (m/z): Calcd for [C21H17N + H]+, 284.1439. Found, 284.1431.

10-(2,6-Dimethylphenyl)benzo[h]quinoline (3h)

\[
\begin{align*}
10-(2,6-	ext{Dimethylphenyl})\text{benzo[h]quinoline (3h)}
\end{align*}
\]

The reaction in THF as solvent, with CsF as base, and 2,6-dimethylphenylboronic acid (18.0 mg) at 60 °C for 18 h afforded the title compound (23.8 mg, 84 %) as white solid. Mp: 108-109 °C. IR (film): \(\nu\) 3043, 2917, 1588, 1416, 836, 765, 734, 644 cm\(^{-1}\). 1H NMR (400 MHz, CDCl3): \(\delta\) 8.40 (dd, \(J = 4.2, 1.7 \) Hz, 1 H), 8.07 (dd, \(J = 8.0, 1.7 \) Hz, 1 H), 7.95 (dd, \(J = 7.8, 1.1 \) Hz, 1 H), 7.88 (d, \(J = 8.8 \) Hz, 1 H), 7.73 (dd, \(J = 7.8, 7.2 \) Hz, 1 H), 7.69 (d, \(J = 8.8 \) Hz, 1 H), 7.39 (dd, \(J = 7.2, 1.1 \) Hz, 1 H), 7.30 (dd, \(J = 8.0, 4.2 \) Hz, 1 H) 7.23-7.18 (m, 1 H), 7.14-7.10 (m, 2 H), 1.81 (s, 6 H). 13C NMR (100 MHz, CDCl3): \(\delta\) 147.73, 147.16, 145.92, 139.94, 134.89, 134.84, 134.78, 130.09, 129.33, 128.45, 127.69, 127.61, 126.61, 126.45, 125.66, 125.50, 120.90, 20.71. HRMS-ESI (m/z): Calcd for [C21H17N + H]+, 284.1439. Found, 284.1433.

10-(Naphthalen-1'-yl)benzo[h]quinoline (3i)

\[
\begin{align*}
10-(\text{Naphthalen}-1'-\text{yl})\text{benzo[h]quinoline (3i)}
\end{align*}
\]

The reaction in dioxane/H\(_2\)O 2:1 as solvent, with Na\(_2\)CO\(_3\) as base, and naphthalen-1-ylboronic acid (20.6 mg) at ambient temperature for 18 h afforded the title compound (26.0 mg, 85 %) as colourless oil. IR (film): \(\nu\) 3042, 2923, 2848, 1586, 1567, 1388, 834, 795, 775, 729 cm\(^{-1}\).
1H NMR (400 MHz, CDCl$_3$): δ 8.04 (dd, $J = 8.0$, 1.3 Hz, 1 H), 8.02 (dd, $J = 4.5$, 1.9 Hz, 1 H), 8.00 (s, 1 H), 7.93 (d, $J = 8.8$ Hz, 1 H), 7.93-7.88 (m, 2 H), 7.77 (dd, $J = 7.9$, 7.2 Hz, 1 H), 7.71 (d, $J = 8.8$ Hz, 1 H), 7.62 (dd, $J = 7.2$, 1.4 Hz, 1 H), 7.58 (dd, $J = 8.2$, 6.9 Hz, 1 H), 7.39 (dd, $J = 6.9$, 1.2 Hz, 1 H), 7.37 (ddd, $J = 8.2$, 6.7, 1.2 Hz, 1 H), 7.23 (br d, $J = 8.5$ Hz, 1 H), 7.16-7.12 (m, 1 H), 7.08 (ddd, $J = 8.5$, 6.7, 1.2 Hz, 1 H). 13C NMR (100 MHz, CDCl$_3$): δ 147.16, 146.40, 144.89, 139.53, 134.89, 134.61, 133.15, 132.99, 131.61, 130.26, 128.28, 128.23, 127.83, 127.21, 127.04, 126.34, 126.14, 126.00, 125.50, 125.02, 124.94, 124.55, 120.78. HRMS-ESI (m/z): Calcd for [C$_{23}$H$_{15}$N + H]$^+$, 306.1283. Found, 306.1275.

10-(2'-Methoxynaphthalen-1'-yl)benzo[h]quinoline (3j)

The reaction in THF as solvent, with CsF as base, and 2-methoxynaphthalen-1-ylphenylboronic acid (24.2 mg) at 60 °C for 2 h afforded the title compound (29.5 mg, 88 %) as white solid. Mp: 118 °C. IR (film): ν 3046, 2932, 2831, 1495, 1269, 1239, 837, 750, 731, 618 cm$^{-1}$. 1H NMR (400 MHz, CDCl$_3$): δ 8.12 (dd, $J = 4.2$, 1.8 Hz, 1 H), 8.04 (dd, $J = 8.0$, 1.1 Hz, 1 H), 8.00 (dd, $J = 8.0$, 1.8 Hz, 1 H), 7.93 (d, $J = 9.0$ Hz, 1 H), 7.92 (d, $J = 8.8$ Hz, 1 H), 7.87 (d, $J = 8.2$ Hz, 1 H), 7.79 (dd, $J = 7.9$, 7.2 Hz, 1 H), 7.69 (d, $J = 8.8$ Hz, 1 H), 7.56 (dd, $J = 7.2$, 1.1 Hz, 1 H), 7.43 (d, $J = 9.0$ Hz, 1 H), 7.28-7.23 (m, 1 H), 7.16 (dd, $J = 8.0$, 4.2 Hz, 1 H), 7.12-7.06 (m, 2 H), 3.65 (s, 3 H). 13C NMR (100 MHz, CDCl$_3$): δ 153.11, 147.40, 146.95, 135.38, 134.89, 134.78, 133.65, 131.87, 130.54, 130.38, 129.17, 128.40, 128.16, 127.58, 127.40, 127.37, 126.75, 125.72, 125.36 (2 C), 122.90, 120.76, 114.51, 56.98. HRMS-ESI (m/z): Calcd for [C$_{24}$H$_{17}$NO + H]$^+$, 336.1388. Found, 336.1380.

10-(2'-Methylnaphthalen-1'-yl)benzo[h]quinoline (3k)
The reaction in THF as solvent, with CsF as base, and 2-methylnaphthalen-1-ylboronic acid (22.3 mg) at 60 °C for 18 h afforded the title compound (23.0 mg, 72 %) as white solid. Mp: 94-95 °C. IR (film): ν 3046, 2918, 2855, 1588, 1566, 1510, 1416, 908, 837, 809, 731 cm⁻¹. ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.08 (m, 1 H), 8.04 (d, J = 8.2 Hz, 1 H), 8.01 (dd, J = 8.1, 1.3 Hz, 1 H), 7.93 (d, J = 8.8 Hz, 1 H), 7.88 (d, J = 8.2 Hz, 1 H), 7.83 (d, J = 8.4 Hz, 1 H), 7.79 (dd, J = 7.9, 7.3 Hz, 1 H), 7.71 (d, J = 8.8 Hz, 1 H), 7.50-7.44 (m, 2 H), 7.34-7.30 (m, 1 H), 7.16 (dd, J = 7.9, 4.2 Hz, 1 H), 7.12-7.07 (m, 2 H), 2.01 (s, 3 H). ¹³C NMR (100 MHz, CDCl₃): δ 147.63, 146.82, 142.42, 138.63, 134.88, 134.79, 133.00, 131.95, 131.42, 131.23, 130.25, 128.53, 128.34, 128.00, 127.53 (2 C), 126.73, 126.11, 125.89, 125.61, 124.87, 123.95, 120.79, 20.69. HRMS-ESI (m/z): Calcd for [C₂₄H₁₇N + H]⁺, 320.1439. Found, 320.1435.

Gram scale synthesis of 10-(2’-methoxynaphthalen-1’-yl)benzo[h]quinoline 3j

10-Chlorobenzo[h]quinoline (898 mg, 4.2 mmol) was dissolved in 15 ml THF and CsF (1.53 g, 10.08 mmol, 2.4 equiv), Pd(OAc)₂ (94.3 mg, 0.42 mmol, 0.1 equiv), P(O)Ph₃ (234 mg, 0.84 mmol, 0.2 equiv), and 2-methoxynaphthalen-1-ylboronic acid (1.018 g, 5.04 mmol, 1.2 equiv) were added. It was heated to 60 °C for 2 h, then cooled to rt, diluted with 75 ml Et₂O, and filtered over MgSO₄. After evaporation of the solvents and column chromatography on silica gel (petroleum ether/EtOAc 20:1 to 10:1) the title compound (1.30 g, 92 %) was obtained as white solid.

Spectroscopic Data

1H NMR of 3a

![NMR spectrum](image)
13C NMR of 3a

![NMR Spectrogram]
1H NMR of 3b

![NMR Spectrum Image]

Parameters:
- **Frequency (MHz):**
 - (f_1): 400.202
- **Original Points Count:**
 - (f_1): 16384
- **Actual Points Count:**
 - (f_1): 32768
- **Acquisition Time (sec):**
 - (f_1): 2.0447
- **Spectral Width (ppm):**
 - (f_1): 20.022
- **Pulse Program:**
 - 2K30
- **Temperature:**
 - 296.1
- **Number of Scans:**
 - 16
13C NMR of 3b

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
1H NMR of 3c

![NMR spectrum](image)

- **Frequency (MHz):** 400.412
- **Original Points Count:** 16384
- **Actual Points Count:** 32768
- **Acquisition Time (sec):** 2.0447
- **Spectral Width (ppm):** 20.011
- **Pulse Program:** ZG30
- **Temperature:** 293.5
- **Number of Scans:** 16
13C NMR of 3c
19F NMR of 3c

- Frequency (MHz): 376.724
- Original Points Count: 32768
- Actual Points Count: 65536
- Acquisition Time (sec): 0.2185
- Spectral Width (ppm): 398.169
- Pulse Program: ZGFLON
- Temperature: 293.5
- Number of Scans: 64
\(^1\text{H} \text{NMR of 3d}\)
13C NMR of 3d

![NMR Spectrogram](image-url)
1H NMR of 3e
13C NMR of 3e

Frequency (MHz): 100.694 (f1)
Original Points Count: 16384 (f1)
Actual Points Count: 32768 (f1)
Acquisition Time (sec): 0.6226 (f1)
Spectral Width (ppm): 261.344 (f1)
Pulse Program: ZGPG30
Temperature: 294.6
Number of Scans: 480
1H NMR of 3f

![NMR Spectrum]

- Frequency (MHz): (f 1) 400.202
- Original Points Count: (f 1) 16384
- Actual Points Count: (f 1) 32768
- Acquisition Time (sec): (f 1) 2.0447
- Spectral Width (ppm): (f 1) 20.022
- Pulse Program: ZG30
- Temperature: 297.2
- Number of Scans: 16
13C NMR of 3f
1H NMR of 3g

![NMR spectrum](image)
13C NMR of 3g
1H NMR of 3h

Frequency (MHz):
(f 1) 400.412

Original Points Count:
(f 1) 16384

Actual Points Count:
(f 1) 32768

Acquisition Time (sec):
(f 1) 2.0447

Spectral Width (ppm):
(f 1) 20.011

Pulse Program:
ZG30

Temperature:
292.1

Number of Scans:
16
13C NMR of 3h
1H NMR of 3j
13C NMR of 3j

Frequency (MHz):
(f 1) 100.694
Original Points Count:
(f 1) 16384
Actual Points Count:
(f 1) 32768
Acquisition Time (sec):
(f 1) 0.6226
Spectral Width (ppm):
(f 1) 261.344
Pulse Program:
ZGPG30
Temperature:
292.7
Number of Scans:
480
1H NMR of 3k
13C NMR of 3k