Supporting information

An Efficient Organocatalytic Enantioselective Synthesis of Spironitrocyclopropanes

Utpal Das, Yi-Ling Tsai and Wenwei Lin*

Department of Chemistry, National Taiwan Normal University,
88, Sec. 4, Tingchow Road, Taipei 11677, Taiwan, R.O.C.

wenweilin@ntnu.edu.tw

General methods: All reagents were used as purchased from commercial suppliers without further purification. IR spectra were recorded on a Perkin Elmer 500 spectrometer. NMR spectra were recorded on a Bruker Avance 400/500 NMR spectrometer. Chemical shifts are reported in δ ppm referenced to an internal TMS standard for ¹H NMR and chloroform-d (δ 77.0 ppm) for ¹³C NMR. Enantioselectivities were determined by high performance liquid chromatography (HPLC) analysis. HRMS spectra were recorded on JEOL SX-102A. The X-ray diffraction measurements were carried out at 298 K on a KAPPA APEX II CCD area detector system equipped with a graphite monochromator and a Mo-Kα fine-focus sealed tube (k = 0.71073 Å). Analytical thin layer chromatography (TLC) was performed using Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Flash-chromatography was performed using Merck silica gel 60 (70–230 mesh).
Table 1. Optimization (amount of water) of enantioselective spironitrocyclopropanation reaction between 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>H₂O (mmol)</th>
<th>t (h)</th>
<th>Yield (%)<sup>b</sup></th>
<th>dr<sup>c</sup></th>
<th>ee (%)<sup>d</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2<sup>e</sup></td>
<td>1.0</td>
<td>2</td>
<td>49</td>
<td>6.5:1</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>0.25</td>
<td>20</td>
<td>70</td>
<td>11:1</td>
<td>90</td>
</tr>
<tr>
<td>4</td>
<td>0.5</td>
<td>9</td>
<td>77</td>
<td>11:1</td>
<td>90</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>5</td>
<td>76</td>
<td>11:1</td>
<td>91</td>
</tr>
</tbody>
</table>

^a Reaction condition: 1a (0.1 mmol), 2a (1.5 eq.), cat. (20 mol%), Na₂CO₃ (1 eq) in 0.5 mL solvent. ^b Isolated yield. ^c Diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. ^d Enantiomeric excess was determined by HPLC analysis. ^e Reaction was performed at room temperature.
Table 2. Optimization (catalyst, temperature screening) of enantioselective spironitrocyclopropanation reaction between 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Cat.</th>
<th>t (h)</th>
<th>Yield (%)</th>
<th>dr</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>5</td>
<td>76</td>
<td>11:1</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>II</td>
<td>5</td>
<td>69</td>
<td>11:1</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>III</td>
<td>5</td>
<td>65</td>
<td>10:1</td>
<td>-88</td>
</tr>
<tr>
<td>4</td>
<td>IV</td>
<td>6</td>
<td>79</td>
<td>12:1</td>
<td>-75</td>
</tr>
<tr>
<td>5<sup>e</sup></td>
<td>V</td>
<td>48</td>
<td>49</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>6<sup>e</sup></td>
<td>VI</td>
<td>48</td>
<td>49</td>
<td>-</td>
<td>±</td>
</tr>
<tr>
<td>7<sup>g</sup></td>
<td>I</td>
<td>6</td>
<td>79</td>
<td>19:1</td>
<td>94</td>
</tr>
<tr>
<td>8<sup>h</sup></td>
<td>I</td>
<td>24</td>
<td>81</td>
<td>19:1</td>
<td>92</td>
</tr>
<tr>
<td>9<sup>h</sup></td>
<td>I</td>
<td>14</td>
<td>79</td>
<td>16:1</td>
<td>88</td>
</tr>
</tbody>
</table>

Reaction condition: 1a (0.1 mmol), 2a (1.5 eq), cat. (20 mol%), H₂O (1 eq), Na₂CO₃ (1 eq.) in 0.5 mL toluene. Isolated yield. Diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. Enantiomeric excess was determined by HPLC analysis. 60% conversion (determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard). 66% conversion. Reaction was performed at -20°C in 0.2 mL toluene. Reaction was performed at -40°C in 0.2 mL toluene. Reaction was performed at -20°C in 0.2 mL toluene using 10 mol% I.
Table 3. Optimization (solvent screening) of enantioselective spironitrocyclopropanation reaction between 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>t (h)</th>
<th>Yield (%)</th>
<th>dr</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>5</td>
<td>76</td>
<td>11:1</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>CH₂Cl₂</td>
<td>6</td>
<td>78</td>
<td>6.5:1</td>
<td>87</td>
</tr>
<tr>
<td>3</td>
<td>THF</td>
<td>6</td>
<td>64</td>
<td>4.3:1</td>
<td>67</td>
</tr>
<tr>
<td>4</td>
<td>CH₃CN</td>
<td>36</td>
<td><10</td>
<td>-</td>
<td>nd</td>
</tr>
</tbody>
</table>

a Reaction condition: 1a (0.1 mmol), 2a (1.5 eq), Na₂CO₃ (1 eq) in 0.2 mL solvent. *b* Isolated yield. *c* Diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. *d* Enantiomeric excess was determined by HPLC analysis. *e* nd: not determined.

66% conversion (determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard).

Table 4. Optimization (base screening) of enantioselective spironitrocyclopropanation reaction between 1a and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>Base</th>
<th>t (h)</th>
<th>Yield (%)</th>
<th>dr</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Na₂CO₃</td>
<td>5</td>
<td>76</td>
<td>11:1</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>NaHCO₃</td>
<td>48</td>
<td>49</td>
<td>10:1</td>
<td>90</td>
</tr>
<tr>
<td>3</td>
<td>K₂CO₃</td>
<td>3</td>
<td>71</td>
<td>9:1</td>
<td>86</td>
</tr>
<tr>
<td>4</td>
<td>Cs₂CO₃</td>
<td>2</td>
<td>76</td>
<td>10:1</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>DABCO</td>
<td>2</td>
<td>54</td>
<td>6:1</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>2,6-lutidine</td>
<td>30</td>
<td>47</td>
<td>6:1</td>
<td>77</td>
</tr>
</tbody>
</table>

a Reaction condition: 1a (0.1 mmol), 2a (1.5 equiv.), Na₂CO₃ (1 eq), NaHCO₃ (1 eq), K₂CO₃ (1 eq), Cs₂CO₃ (1 eq), DABCO (1 eq). Toluene (0.1 mL) was added to the vial after cooling to –20 °C. Bromonitroalkane (2a-c) was added followed by H₂O (0.1 mL) and the resulting mixture was stirred at this condition until completion (monitored by TLC / ¹H NMR). *b* Isolated yield. *c* Diastereomeric ratio was determined by ¹H NMR spectroscopic analysis of the crude reaction mixture. *d* Enantiomeric excess was determined by HPLC analysis. *e* 60% conversion (determined by ¹H NMR analysis of the crude reaction mixture using CH₂Br₂ as an internal standard).

General procedure for the Organocatalytic Enantioselective Synthesis of Spironitrocyclopropanes (3a-o): All the reactions were performed in anhydrous solvents. In a capped glass vial equipped with a magnetic stirring bar was added 2-arylidene-1,3-indandiones 1a-l (0.1 mmol), Na₂CO₃ (0.1 mmol) and catalyst I (20 mol%). Toluene (0.2 mL) was added to the vial after cooling to –20 °C. Bromonitroalkane (2a-c) was added followed by H₂O (0.1 mmol) and the resulting mixture was stirred at this condition until completion (monitored by TLC / ¹H NMR). The reaction mixture was directly subjected to flash column chromatography using ethyl acetate and hexanes (4:1) as eluent.
3a: The compound was prepared following the general procedure and was obtained as a colorless solid.

![Chemical Structure of 3a](image)

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.09 - 8.01 (m, 1H), 7.95 - 7.83 (m, 3H), 7.47 (d, 2H, J = 8.4 Hz), 7.17 (d, 2H, J = 8.4 Hz), 5.48 (d, 1H, J = 6.8 Hz), 4.41 (d, 1H, J = 6.8 Hz). 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ/ppm: 191.10, 190.80, 142.11, 141.66, 136.02, 135.93, 131.94, 130.49, 128.16, 123.70, 123.40, 123.15, 69.65, 45.57, 41.06. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3010, 1708, 1546, 1365, 1347. HRMS (ESI) C$_{17}$H$_9$BrNO$_4$, [M-H] $^{-}$ (369.9715) found: 369.9718.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t$_R$ (minor) = 35.12 min; t$_R$ (major) = 61.15 min] ee 96%.

Crystallographic data for 3a (CCDC 892806 contains the supplementary crystallographic data for 3a. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre): C$_{17}$H$_9$BrNO$_4$, M = 372.16, monoclinic, Space group $P 2_1$, T = 200 K, a = 9.2201(4) b = 5.4993(3) c = 14.8584(9) Å, alpha = 90 beta = 93.833(3) gamma = 90, V = 751.70(7) Å3, λ(Mo-Kα) = 0.71073 Å, Z = 2, D = 1.644 g/cm3, R = 0.0299, wR2 = 0.0825.

![ORTEP Diagram of 3a](image)

3b: The compound was prepared following the general procedure and was obtained as a colorless solid.
1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.08 - 8.02 (m, 1H), 7.95 – 7.82 (m, 3H), 7.33 (d, 2H, $J = 8.8$ Hz), 7.24 (d, 2H, $J = 8.4$ Hz), 5.49 (d, 1H, $J = 7.2$ Hz), 4.44 (d, 1H, $J = 6.8$ Hz). 13C NMR (125 MHz, CDCl$_3$, 25 °C) δ/ppm: 191.15, 190.89, 142.07, 141.61, 136.04, 135.96, 134.99, 130.20, 128.98, 127.54, 123.70, 123.41, 69.65, 45.59, 40.98. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3022, 1741, 1705, 1587, 1546, 1491, 1351, 1074. HRMS (ESI) C$_{17}$H$_9$ClNO$_4$, [M-H] (326.0220) found: 326.0211.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t_R (minor) = 30.92 min; t_R (major) = 53.22 min] ee 95%.

3c: The compound was prepared following the general procedure and was obtained as a colorless solid.

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.12 - 8.04 (m, 1H), 7.97 - 7.86 (m, 3H), 7.50 (d, 2H, $J = 8.8$ Hz), 5.54 (d, 1H, $J = 6.8$ Hz), 4.52 (d, 1H, $J = 7.2$ Hz). 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ/ppm: 190.95, 190.38, 148.00, 142.06, 141.51, 136.36, 136.31, 136.22, 130.99, 130.01, 123.85, 123.55, 69.26, 45.29, 39.90. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3025, 1745, 1712, 1590, 1550, 1505, 1347. HRMS (ESI) C$_{17}$H$_9$N$_2$O$_6$, [M-H] (337.0461) found: 337.0466.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 85:15, flow rate: 1.0 mL/min, t_R (minor) = 59.30 min; t_R (major) = 131.05 min] ee 86%.

3d: The product was prepared following the general procedure and was obtained as a colorless solid.

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.12 - 8.04 (m, 1H), 7.99 – 7.86 (m, 3H), 7.66 (d, 2H, $J = 8.0$ Hz), 7.44 (d, 2H, $J = 8.0$ Hz), 5.51 (d, 1H, $J = 7.2$ Hz), 4.48 (d, 1H, $J = 7.2$ Hz). 13C NMR (100 MHz, CDCl$_3$, 25 °C) δ/ppm: 190.95, 190.45, 142.01, 141.51, 136.36, 136.31, 136.22, 130.99, 130.01, 123.85, 123.55, 69.26, 45.29, 39.90. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3025, 1745, 1712, 1590, 1550, 1505, 1347. HRMS (ESI) C$_{18}$H$_{10}$N$_2$O$_6$, [M-H] (317.0562) found: 317.0554.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 80:20, flow rate: 1.0 mL/min, t_R (minor) = 40.73 min; t_R (major) = 80.03 min] ee 92%.
3e: The compound was prepared following the general procedure and was obtained as a colorless solid.

![Structure of compound 3e]

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.10 - 8.03 (m, 1H), 7.94 – 7.83 (m, 3H), 7.51 (d, 1H, J = 8.0 Hz), 7.46 – 7.36 (m, 2H), 7.30 – 7.21 (m, 1H), 5.43 (d, 1H, J = 6.8 Hz), 4.42 (d, 1H, J = 6.8 Hz).

13C NMR (100 MHz, CDCl$_3$, 25 °C) δ/ppm: 190.98, 190.96, 142.14, 141.47, 135.86, 135.81, 132.83, 130.43, 130.35, 129.62, 127.65, 125.64, 123.61, 123.28, 69.85, 44.82, 41.51. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3062, 1738, 1708, 1590, 1557, 1365, 1203.

HRMS (ESI) C$_{17}$H$_9$BrNO$_4$, [M-H] $^{-}$ (369.9715) found: 369.9708.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 80:20, flow rate: 1.0 mL/min, t$_{R}$ (minor) = 16.55 min; t$_{R}$ (major) = 34.77 min] ee 96%.

3f: The compound was prepared following the general procedure and was obtained as a colorless solid.

![Structure of compound 3f]

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.10 - 8.03 (m, 1H), 7.94 – 7.83 (m, 3H), 7.51 (d, 1H, J = 8.0 Hz), 7.46 – 7.36 (m, 2H), 7.30 – 7.21 (m, 1H), 5.43 (d, 1H, J = 6.8 Hz), 4.42 (d, 1H, J = 6.8 Hz).

13C NMR (100 MHz, CDCl$_3$, 25 °C) δ/ppm: 191.04, 190.87, 163.63, 161.66, 142.05, 141.65, 136.03 (d, J = 8.12 Hz), 131.41 (d, J = 7.87 Hz), 130.34 (d, J = 8.37 Hz), 124.63 (d, J = 3.0 Hz), 123.73, 123.46, 116.13 (d, J = 5.0 Hz), 115.95 (d, J = 3.25 Hz), 69.59, 45.51, 40.90 (d, J = 2.25 Hz). IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 3024, 1730, 1708, 1583, 1553, 1354, 1266. HRMS (ESI) C$_{17}$H$_9$FNO$_6$, [M-H] $^{-}$ (310.0516) found: 310.0513.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t$_{R}$ (minor) = 20.65 min; t$_{R}$ (major) = 32.88 min] ee 86%.

3g: The compound was prepared following the general procedure and was obtained as a colorless solid.

![Structure of compound 3g]

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.07 - 8.02 (m, 1H), 7.93 – 7.81 (m, 3H), 7.38 – 7.32 (m, 3H), 7.32 – 7.24 (m, 2H), 5.54 (d, 1H, J = 5.6 Hz), 4.49 (d, 1H, J = 5.6 Hz).

13C NMR (125 MHz, CDCl$_3$, 25 °C) δ/ppm: 191.20, 191.19, 142.04, 141.66, 135.87, 135.82, 129.01, 128.88, 128.86, 128.70, 123.60,
123.33, 69.80, 45.77, 42.00. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 2915, 1738, 1705, 1587, 1546, 1358. HRMS (ESI) C17H11NO4, [M]$^-$ (293.0688) found: 293.0694.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t_R (minor) = 22.31 min; t_R (major) = 37.60 min] ee 96%.

For ent-3g: The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t_R (major) = 22.38 min; t_R (minor) = 37.37 min] ee 35%.

3h: The compound was prepared following the general procedure and was obtained as a colorless solid.

\begin{center}
\includegraphics[width=0.2\textwidth]{3h.png}
\end{center}

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.03 (d, 1H, $J = 7.2$ Hz), 7.93 – 7.79 (m, 3H), 7.21 – 7.11 (m, 4H), 5.52 (d, 1H, $J = 6.8$ Hz), 4.46 (d, 1H, $J = 6.8$ Hz), 2.32 (s, 3H). 13C NMR (100 MHz, CDCl$_3$, 25 °C) \(\delta\)/ppm: 191.29 (2C), 142.07, 141.66, 138.89, 135.81, 135.76, 129.41, 128.72, 125.90, 123.56, 123.29, 69.91, 45.93, 42.14, 21.19. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 2915, 1705, 1601, 1561, 1351. HRMS (ESI) C18H13NO4, [M]$^-$ (307.0845) found: 307.0853.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 88:12, flow rate: 1.0 mL/min, t_R (minor) = 22.03 min; t_R (major) = 34.01 min] ee 96%.

3i: The compound was prepared following the general procedure and was obtained as a colorless solid.

\begin{center}
\includegraphics[width=0.2\textwidth]{3i.png}
\end{center}

1H NMR (400 MHz, CDCl$_3$, 25 °C) δ/ppm: 8.12 – 8.03 (m, 1H), 7.94 – 7.83 (m, 3H), 7.33 – 7.21 (m, 3H), 7.18 – 7.11 (m, 1H), 5.50 (d, 1H, $J = 7.2$ Hz), 4.41 (d, 1H, $J = 6.8$ Hz), 2.02 (m, 3H). 13C NMR (100 MHz, CDCl$_3$, 25 °C) \(\delta\)/ppm: 191.36, 191.02, 141.90, 141.28, 137.56, 135.92 (2C), 130.46, 129.05, 128.38, 127.69, 126.15, 123.65, 123.34, 69.95, 45.09, 40.50, 19.49. IR (KBr) $\tilde{\nu}$ (cm$^{-1}$): 2922, 1741, 1708, 1553, 1351, 1258. HRMS (ESI) C18H12NO4, [M-H]$^-$ (306.0766) found: 306.0758.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t_R (minor) = 23.77 min; t_R (major) = 34.01 min] ee 96%.
3j: The compound was prepared following the general procedure and was obtained as a colorless solid.

\[\text{H NMR (400 MHz, CDCl}_3, 25 ^\circ \text{C)} \delta/\text{ppm: 8.03 (d, 1H, J = 7.2 Hz), 7.95 – 7.79 (m, 3H), 7.36 (d, 2H, J = 8.4 Hz), 7.23 (d, 2H, J = 8.0 Hz), 5.54 (d, 1H, J = 7.2 Hz), 4.44 (d, 1H, J = 7.2 Hz), 1.29 (s, 9H).} \]

\[\text{C NMR (100 MHz, CDCl}_3, 25 ^\circ \text{C)} \delta/\text{ppm: 191.31, 191.28, 152.04, 142.04, 141.72, 135.81, 135.76, 128.57, 125.97, 125.65, 123.57, 123.32, 70.02, 46.14, 42.26, 34.66, 31.17.} \]

\[\text{IR (KBr) } \tilde{\nu} (\text{cm}^{-1}): 2959, 2863, 1708, 1601, 1553, 1358.} \]

\[\text{HRMS (ESI) C21H18NO4, } [\text{M-H}]^- (349.1314) \text{ found: 349.1304.} \]

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 95:05, flow rate: 0.8 mL/min, t_R (minor) = 32.90 min; t_R (major) = 48.04 min] ee 98%.

3k: The compound was prepared following the general procedure and was obtained as a colorless solid.

\[\text{H NMR (400 MHz, CDCl}_3, 25 ^\circ \text{C)} \delta/\text{ppm: 8.12 – 7.98 (m, 2H), 7.97 – 7.88 (m, 2H), 7.48 (d, 2H, J = 8.0 Hz), 7.02 (d, 2H, J = 8.0 Hz), 4.37 (s, 1H), 1.99 (s, 3H).} \]

\[\text{C NMR (100 MHz, CDCl}_3, 25 ^\circ \text{C)} \delta/\text{ppm: 192.63, 191.95, 142.73, 141.12, 135.94, 135.89, 131.90, 131.15, 127.95, 123.67, 123.24, 122.63, 80.36, 45.27, 42.71, 13.83.} \]

\[\text{IR (KBr) } \tilde{\nu} (\text{cm}^{-1}): 3125, 1738, 1705, 1590, 1546, 1347.} \]

\[\text{HRMS (FAB+) C18H13NO4Br, } [\text{M+H}]^+ (386.0028) \text{ found: 386.0030.} \]

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, t_R (minor) = 29.38 min; t_R (major) = 31.30 min] ee 96%.

Crystallographic data for 3k (CCDC 892808 contains the supplementary crystallographic data for 3k. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre): C18H12BrN2O4, M = 386.19, monoclinic, Space group P 21, T = 200 K, a = 8.8074(11) b = 9.7518(15) c = 9.7363(14) Å, alpha = 90 beta = 93.785(5) gamma = 90 Å³, \(\lambda(\text{Mo-K}\alpha) = 0.71073 \) Å, Z = 2, D = 1.537 g/cm³, R = 0.0350, wR2 = 0.0731.
3l: The compound was prepared following the general procedure and was obtained as a colorless solid.

\[\text{ORTEP diagram of 3k} \]

\[^1\text{H NMR}\] (400 MHz, CDCl\textsubscript{3}, 25 °C) δ/ppm: 8.08 – 7.95 (m, 2H), 7.94 – 7.84 (m, 2H), 7.41 – 7.31 (m, 3H), 7.09 - 7.19 (m, 2H), 4.46 (s, 1H), 2.02 (s, 3H). \[^{13}\text{C NMR}\] (100 MHz, CDCl\textsubscript{3}, 25 °C) δ/ppm: 193.01, 192.06, 142.79, 141.08, 135.77 (2C), 129.98, 128.87, 128.45, 128.23, 125.85, 80.72, 45.42, 43.72, 13.96. \[^{\text{IR}}\] (KBr) \(\tilde{\nu}\) (cm\(^{-1}\)): 2988, 1738, 1701, 1590, 1542, 1351, 1247. HRMS (ESI) C\textsubscript{18}H\textsubscript{13}NO\textsubscript{4}Na, [M+Na]\(^+\) (330.0742) found: 330.0750.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK IA column, 254 nm, n-Hexane: EtOH = 90:10, flow rate: 1.0 mL/min, \(t_R\) (minor) = 12.67 min; \(t_R\) (major) = 14.36 min] ee 93%.

3m: The compound was prepared following the general procedure and was obtained as a colorless solid.

\[\text{ORTEP diagram of 3m} \]

\[^1\text{H NMR}\] (400 MHz, CDCl\textsubscript{3}, 25 °C) δ/ppm: 8.07 – 7.96 (m, 2H), 7.94 – 7.85 (m, 2H), 7.15 (d, 2H, \(J = 7.6\) Hz), 7.20 (d, 2H, \(J = 8.0\) Hz), 4.42 (s, 1H), 2.35 (s, 3H), 2.02 (s, 3H). \[^{13}\text{C NMR}\] (100 MHz, CDCl\textsubscript{3}, 25 °C) δ/ppm: 193.12, 192.14, 142.79, 141.09, 138.17, 135.72 (2C), 129.35, 129.31, 125.79, 123.54, 123.12, 80.86, 45.49, 43.72, 21.17, 13.97. \[^{\text{IR}}\] (KBr) \(\tilde{\nu}\) (cm\(^{-1}\)): 2981, 2915, 1741, 1705, 1587, 1546, 1351, 1251. C\textsubscript{19}H\textsubscript{15}NO\textsubscript{4}Na, [M+Na]\(^+\) (344.0899) found: 344.0909.
The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AS-H column, 254 nm, n-Hexane: IPA = 98:02, flow rate: 0.9 mL/min, \(t_R \) (major) = 27.72 min; \(t_R \) (minor) = 108.83 min] ee 96%.

3n: The compound was prepared following the general procedure and was obtained as a colorless solid.

![Chemical structure of 3n](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta \)/ppm: 8.07 – 7.98 (m, 2H), 7.95 – 7.86 (m, 2H), 7.48 (d, 2H, \(J = 8.4 \) Hz), 7.08 (d, 2H, \(J = 8.4 \) Hz), 4.33 (s, 1H), 2.51 – 2.38 (m, 1H), 2.38 – 2.25 (m, 1H), 0.99 (t, 3H, \(J = 7.6 \) Hz). \(^13\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta \)/ppm: 192.80, 192.26, 142.63, 141.07, 135.97, 135.86, 131.84, 131.17, 128.07, 123.69, 123.23, 122.57, 85.26, 45.43, 43.76, 20.60, 9.84. IR (KBr) \(\nu \) (cm\(^{-1}\)): 2996, 1738, 1701, 1590, 1546, 1351. HRMS (FAB+): C\(_{19}\)H\(_{15}\)NO\(_4\)Br, [M+H]\(^+\) (400.0184) found: 400.0188.

The enantiomeric excess was determined by HPLC analysis. [CHIRALPAK AD-H column, 254 nm, n-Hexane: IPA = 90:10, flow rate: 1.0 mL/min, \(t_R \) (major) = 14.25 min; \(t_R \) (minor) = 17.06 min] ee 56%.

3o: The compound was prepared following the general procedure and was obtained as a colorless liquid. The available data (spectroscopy, hplc) suggest that compound 3o contains (other than diastereomer) an unknown compound. As it was obtained as an inseparable mixture, we are unable to identify the mixture composition, yield or diastereoselectivity.

The following data were obtained from the mixture (after flash column chromatography).

![Chemical structure of 3o](image)

\(^1\)H NMR (400 MHz, CDCl\(_3\), 25 °C) \(\delta \)/ppm: 8.05 – 7.94 (m, 6H), 7.92 – 7.82 (m, 6H), 4.97 - 4.89 (m, 3H), 3.11 – 3.01 (m, 2H), 2.50 – 2.36 (m, 1H), 2.28 – 2.11 (m, 3H), 1.97 – 1.71 (m, 7H), 1.70 – 1.51 (m, 9H), 1.45 – 1.10 (m, 18H), 1.10 – 0.93 (m, 4H). \(^13\)C NMR (100 MHz, CDCl\(_3\), 25 °C) \(\delta \)/ppm: 195.07, 193.53, 192.03, 191.53, 143.92, 141.77, 141.42, 140.43, 135.88, 135.82, 135.64, 135.55, 123.51, 123.43, 123.32, 123.16, 123.11, 71.22, 69.94, 44.83, 43.66, 43.43, 40.70, 33.45, 32.81, 32.30, 32.22, 31.97, 30.59, 25.92, 25.75, 25.53, 25.41, 25.23. IR (KBr) \(\nu \) (cm\(^{-1}\)): 3040, 2922, 2848, 1745, 1708, 1590, 1553, 1354. HRMS (ESI): C\(_{17}\)H\(_{18}\)NO\(_4\), [M+H]\(^+\) (300.1236) found: 300.1234.

The enantiomeric excess was determined by HPLC. [CHIRALPAK IA column, 254 nm, n-Hexane: EtOH = 95:05, flow rate: 0.8 mL/min. \(t_R \) (minor) = 8.95 min; \(t_R \) (major) = 10.45 min] ee 72%.
\(t_R \) (major) = 12.81 min; \(t_R \) (minor) = 16.67 min] ee 87%.
\(t_R \) (minor) = 15.23 min; \(t_R \) (major) = 27.97 min] ee 70%
Current Data Parameters
NAME Das-371B
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date 20120317
Time 17.09
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
TD 32768
SOLVENT CDCl3
NS 16
DS 0
SWH 0.221142 Hz
FIDRES 2.2611110 sec
AQ 128
DW 69.000 usec
DE 6.50 usec
TE 303.9 K
D1 2.00000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 1H
P1 14.00 usec
PL1 0 dB
SF01 400.1324008 MHz

F2 - Processing parameters
SI 16384
SF 400.1300087 MHz
WDW EM
SSB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters
NAME Das-371B
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date 20120317
Time 17.11
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 1044
DS 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6816452 sec
RG 8192
DW 20.800 usec
DE 6.50 usec
TE 303.9 K
D1 2.00000000 sec
D11 0.03000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 10.50 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDPROG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 -0.60 dB
PL12 15.00 dB
PL13 18.00 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127682 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 1.00
Current Data Parameters
NAME Das-425-1
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date 20120510
Time 22.01
INSTRUM spect
PBH 5 mm PABBO BB-
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 3000
DS 0
SWR 30300.029 Hz
F1RES 0.458222 Hz
AQ 1.0912410 sec
RG 9195.2
DW 16.650 usec
DE 6.50 usec
TE 295.4 K
D1 2.0000000 sec
D11 0.2300000 sec
TOO 1

------- CHANNEL f1 -------
NUC1 13C
P1 10.50 usec
PL1 7.00 dB
SFO1 125.7709931 MHz

------- CHANNEL f2 -------
CPDPRG2 waltz16
NUC2 1H
P2 90.00 usec
PL2 -0.60 dB
PL12 15.00 dB
PL13 18.00 dB
SFO2 500.1320005 MHz

F2 - Processing parameters
SI 65536
SF 125.7577917 MHz
WOW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.00
Current Data Parameters
NAME Das-423
EXPNB 3
PROCNO 1

F2 - Acquisition Parameters
Date 20120509
Time 17.14
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
TD 32768
SOLVENT CDCl3
NS 16
DS 0
SWN 7246.377 Hz
FIDRES 0.221142 Hz
AQ 2.2611110 sec
RG 322.5
DW 69.000 us
DE 6.50 usec
TE 298.9 K
D1 2.00000000 sec
TDD 1

======== CHANNEL f1 ========
NUC1 1H
P1 11.70 usec
PL1 4.00 dB
SF01 400.1324008 MHz

F2 - Processing parameters
SI 16384
SF 400.1300073 MHz
WDM EM
SSB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters
NAME Das-423
EXPNO 6
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120512
Time 18.10
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 1000
DS 0
SNMR 2038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6816452 sec
RG 8192
DW 20.800 usec
DE 6.50 usec
TE 298.7 K
D1 2.00000000 sec
D11 0.00000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 9.00 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 3.80 dB
PL12 21.60 dB
PL13 24.60 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127723 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.00
Current Data Parameters

NAME lynn330
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120413
Time 11.33
PROBHM spec
PROBHD 5 mm BBO BB-1H
POLPROG zg30
TB 32768
SOLVENT CDCl3
MS 16
SWH 7246.377 Hz
FIDRES 0.221142 Hz
AQ 2.2611110 sec
RG 256
DW 69.000 usec
DE 6.50 usec
TE 298.9 K
D1 2.00000000 sec
D20 1

======== CHANNEL f1 ========
NUC1 1H
P1 11.70 usec
PL1 4.00 dB
LP01 400.1334008 MHz

F2 - Processing parameters
SI 16384
SP 400.13340073 MHz
WDM EM
ZRB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters
NAME Das-426
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120509
Time 17.23
INSTRUM spect
PROBHD 5 mm BBO BB-1H
POLPROG zpg30
TD 32768
SOLVENT CDCl3
NS 720
DS 0
SWH 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.681452 sec
RG 8192
DW 20.800 usec
TE 298.8 K
D0 2.00000000 sec
D11 0.00000000 sec
TDD 1

======== CHANNEL f1 ========
NUC1 13C
P1 8.90 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 3.80 dB
PL12 21.60 dB
PL13 24.60 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127709 MHz
WDW EM
SSB 0
LB 1.00 Hz
PC 1.00
Current Data Parameters
NAME lynn377-1
EXPNO 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120614
Time 10.44
INSTRUM spect
PROBHD 5 mm BBO BB-1H
POLPROG zg30
SOLVENT CDCl3
NS 16
SWH 7246.377 Hz
FIDRES 0.221142 Hz
AQ 2.2611110 sec
RG 256
DW 69.000 usec
TE 298.4 K
D1 2.00000000 sec

======== CHANNEL f1 ========
NUC1 1H
P1 11.70 usec
PL1 4.00 dB
SFO1 400.1324008 MHz

F2 - Processing parameters
SI 16384
Zf 400.13000000 Hz
WDM 400.13240000 Hz
SUB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters

- **NAME**: lynn377
- **EXPNO**: 2
- **PROCNO**: 1

F2 - Acquisition Parameters

- **Date**: 20120627
- **Time**: 20.20
- **INSTRUM**: spect
- **PROBHD**: 5 mm PABBO BB-
- **PULPROG**: zgpg30
- **TD**: 65536
- **SOLVENT**: CDCl3
- **NS**: 15740
- **DS**: 0
- **SWH**: 30030.029 Hz
- **FIDRES**: 0.458222 Hz
- **AQ**: 1.0912410 sec
- **RG**: 9195.2
- **DW**: 16.650 usec
- **DE**: 6.50 usec
- **TE**: 295.7 K
- **D1**: 2.00000000 sec
- **D11**: 0.03000000 sec
- **TD0**: 1

======== CHANNEL f1 ========

- **NUC1**: 13C
- **P1**: 10.50 usec
- **PL1**: 7.00 dB
- **SFO1**: 125.7709931 MHz

======== CHANNEL f2 ========

- **CPDPRG2**: waltz16
- **NUC2**: 1H
- **PCPD2**: 90.00 usec
- **PL2**: -0.60 dB
- **PL12**: 15.00 dB
- **PL13**: 18.00 dB
- **SFO2**: 500.1320005 MHz

F2 - Processing parameters

- **SI**: 65536
- **SF**: 125.7577908 MHz
- **WDW**: EM
- **SSB**: 0
- **LB**: 1.00 Hz
- **GB**: 0
- **PC**: 1.00
Current Data Parameters
NAME Das-436-1
EXPNO 1
PROCNO 1
F2 - Acquisition Parameters
Date_ 20120519
Time 11.18
INSTRUM spect
PROBHD 5 mm PABBO BB-
POLPROG zg30
TD 32768
SOLVENT CDCl3
NS 1
SMH 9057.971 Hz
F1 RES 0.276427 Hz
AQ 1.8089888 sec
RG 161.3
DW 55.200 usec
DE 6.50 usec
TE 294.5 K
DS 2.00000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 1H
PL1 0 dB
SFO1 500.1330008 MHz
F2 - Processing parameters
SI 16384
SF 500.1300134 MHz
WSWM 5.001300134 MHz
PC 1.00
Current Data Parameters
NAME Das-436
EXPN 2
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120519
Time 11.21
INSTRUM spect
PROBHD 5 mm PABBO BB-
PULPROG zgpg30
TD 65536
SOLVENT CDCl3
NS 1315
DS 0
DM68 30030.009 Hz
F1RES 0.458222 Hz
AQ 1.0912410 sec
RG 91.95.2
SM 16.650 usec
TE 295.1 K
D1 2.00000000 sec
D13 0.03000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 10.50 usec
PL1 7.00 dB
SFO1 125.7709931 MHz

======== CHANNEL f2 ========
CPERIOD walsh216
WAV1 1H
PCPD2 90.00 usec
PL2 -0.60 dB
PL12 15.00 dB
PL13 18.00 dB
SFO2 500.000005 MHz

F2 - Processing parameters
SI 65536
DF 125.7577945 MHz
WMR EM
SUB 0
LB 1.00 Hz
DR 0
PC 1.00
Current Data Parameters
NAME Das-443-1
EXPNO 1
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120527
Time 10.03
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
TD 32768
SOLVENT CDCl3
NS 16
DS 0
SMM 7244.377 Hz
TIMES 0.221142 Hz
AQ 2.2611110 sec
RG 128
SW 69.000 usec
SE 6.50 usec
TE 299.1 K
D1 2.00000000 sec
TDO 1

F2 - Processing parameters
SI 16384
SF 400.1324008 MHz
WDW EM
SSB 0
LB 0 Hz
GB 0
PC 1.00
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2012
Current Data Parameters
NAME lynn367-1
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120602
Time 11.26
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zg30
T0 30768
SOLVENT CDCl3
NS 1
DS 0
SNR 7246.377 Hz
F1RES 0.221142 Hz
AQ 2.261111 sec
RG 256
DW 69.000 usec
DE 6.50 usec
TE 298.7 K
D1 2.00000000 sec
T20 1

======== CHANNEL f1 ========
NUC1 1H
P1 11.70 usec
PL1 4.00 dB
SFO1 400.1324008 MHz

F2 - Processing parameters
SI 16384
SF 400.1300079 MHz
WDW EM
SSB 0
LB 0 Hz
GB 0
PC 1.00
Current Data Parameters
NAME lynn367-1
EXPNO 4
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120602
Time 11.27
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 851
DS 0
SWH 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6814452 sec
RG 9195.2
DW 20.800 usec
DE 6.50 usec
TE 298.7 K
S1 2.000000000 sec
D11 0.000000000 sec
TD0 1

======== CHANNEL f1 ========
NUC1 13C
P1 8.90 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 3.80 dB
PL12 21.60 dB
PL13 24.60 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127701 MHz
WDM EM
SUB 0
LB 1.00 Hz
GR 0
PC 1.00
 Current Data Parameters
 NAME Das-451
 EXNO 3
 PROCNO 1

F2 - Acquisition Parameters
 Date_ 20120528
 Time 18.04
 INSTRUM spect
 PROBHD 5 mm BBO NR-1H
 PULPROG zg30
 TD 32768
 SOLVENT CDCl3
 NS 16
 DS 0
 DMS 7246.377 Hz
 FILESS 0.221142 Hz
 AQ 128
 DM 69.000 usec
 DE 6.50 usec
 TE 298.4 K
 DI 2.00000000 sec
 TDO 1

======== CHANNEL f1 ========
 NUC1 1H
 P1 11.70 usec
 PL1 4.00 dB
 SFO1 400.1324008 MHz

F2 - Processing parameters
 SI 16384
 SF 400.1324008 MHz
 NFBM 0
 SSM 0
 LN 0 Hz
 GB 0 Hz
 PC 1.00
Current Data Parameters
NAME Das-451
EXPNO 4
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120528
Time 18.07
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 1327
DS 0
SWH 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6816452 sec
RG 8192
DW 20.800 usec
DE 6.50 usec
TE 298.5 K
D1 2.00000000 sec
D11 0.03000000 sec

======== CHANNEL f1 ========
NUC1 13C
P1 8.90 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDP RG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 3.80 dB
PL12 21.60 dB
PL13 24.60 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127690 MHz
WDW EM
SSB 0
LB 1.00 Hz
GR 0
PC 1.00
Current Data Parameters
NAME Das-458
EXPNO 3
PROCNO 1

F2 - Acquisition Parameters
Date_ 20120608
Time 16.23
INSTRUM spect
PROBHD 5 mm BBO BB-1H
PULPROG zgpg30
TD 32768
SOLVENT CDCl3
NS 480
DS 0
SNW 24038.461 Hz
FIDRES 0.733596 Hz
AQ 0.6816452 sec
RG 8192
DW 20.800 usec
DE 6.50 usec
TE 298.1 K
D1 2.00000000 sec
D11 0.03000000 sec

======== CHANNEL f1 ========
NUC1 13C
P1 8.90 usec
PL1 7.00 dB
SFO1 100.6233325 MHz

======== CHANNEL f2 ========
CPDPRG2 waltz16
NUC2 1H
PCPD2 90.00 usec
PL2 3.60 dB
PL12 21.60 dB
PL13 24.60 dB
SFO2 400.1316005 MHz

F2 - Processing parameters
SI 32768
SF 100.6127723 MHz
WDW EM
SSB 0
LB 1.00 Hz
GB 0
PC 1.00
<table>
<thead>
<tr>
<th>Peak 1</th>
<th>Peak 2</th>
<th>Peak 3</th>
<th>Peak 4</th>
<th>Peak 5</th>
<th>Peak 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.84</td>
<td>20.60</td>
<td>43.76</td>
<td>45.43</td>
<td>76.75</td>
<td>77.00</td>
</tr>
<tr>
<td>76.75</td>
<td>77.25</td>
<td>85.26</td>
<td>122.57</td>
<td>123.23</td>
<td>123.69</td>
</tr>
<tr>
<td>128.07</td>
<td>131.17</td>
<td>131.84</td>
<td>135.86</td>
<td>135.97</td>
<td>141.07</td>
</tr>
<tr>
<td>142.63</td>
<td>192.26</td>
<td>192.80</td>
<td>220</td>
<td>200</td>
<td>180</td>
</tr>
</tbody>
</table>

Current Data Parameters

NAME	**Das-459**
EXPNO | 2
PROCNO | 1

Acquisition Parameters

- **Date_** 20120609
- **Time** 12.01
- **INSTRUM** spect
- **PROBHD** 5 mm PABBO BB-
- **PULPROG** zgpg30
- **TD** 65536
- **SOLVENT** CDCl3
- **NS** 558
- **DS** 0
- **SWH** 30030.029 Hz
- **FIDRES** 0.458222 Hz
- **AQ** 1.0912410 sec
- **RG** 9195.2
- **DW** 16.650 usec
- **DE** 6.50 usec
- **TE** 294.7 K
- **D1** 2.00000000 sec
- **D11** 0.03000000 sec

Processing Parameters

- **SI** 65536
- **SF** 125.7577936 MHz
- **WDW** EM
- **SSB** 0
- **LB** 1.00 Hz
- **GB** 0
- **PC** 1.00

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2012
<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.95</td>
<td>173.01</td>
<td>8881.36</td>
<td>50.7885</td>
</tr>
<tr>
<td>58.77</td>
<td>95.02</td>
<td>8605.59</td>
<td>49.2115</td>
</tr>
<tr>
<td>35.12</td>
<td>7.67</td>
<td>319.01</td>
<td>1.9223</td>
</tr>
<tr>
<td>61.15</td>
<td>174.56</td>
<td>16276.23</td>
<td>98.0777</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>59.10</td>
<td>305.40</td>
<td>28133.86</td>
<td>100.0000</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>30.77</td>
<td>182.43</td>
<td>8475.71</td>
<td>49.8221</td>
</tr>
<tr>
<td>52.67</td>
<td>108.85</td>
<td>8536.24</td>
<td>50.1779</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.74</td>
<td>12.86</td>
<td>580.61</td>
<td>2.5440</td>
</tr>
<tr>
<td>53.01</td>
<td>267.37</td>
<td>22241.93</td>
<td>97.4560</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>59.28</td>
<td>35.05</td>
<td>3301.62</td>
<td>50.3917</td>
</tr>
<tr>
<td>134.82</td>
<td>14.61</td>
<td>3250.28</td>
<td>49.6083</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>59.30</td>
<td>23.86</td>
<td>2129.05</td>
<td>7.0275</td>
</tr>
<tr>
<td>131.05</td>
<td>137.56</td>
<td>28166.80</td>
<td>92.9725</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>39.19</td>
<td>121.41</td>
<td>7672.10</td>
<td>49.9607</td>
</tr>
<tr>
<td>77.31</td>
<td>59.22</td>
<td>7684.17</td>
<td>50.0393</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40.73</td>
<td>7.32</td>
<td>398.43</td>
<td>4.1638</td>
</tr>
<tr>
<td>80.03</td>
<td>66.82</td>
<td>9170.44</td>
<td>95.8362</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>17.01</td>
<td>150.70</td>
<td>4808.01</td>
<td>50.0944</td>
</tr>
<tr>
<td>35.99</td>
<td>78.01</td>
<td>4789.89</td>
<td>49.9056</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.55</td>
<td>10.49</td>
<td>274.32</td>
<td>1.7396</td>
</tr>
<tr>
<td>34.77</td>
<td>284.32</td>
<td>15494.78</td>
<td>98.2604</td>
</tr>
</tbody>
</table>
Retention time (min) | Height (mv) | Area (mv.sec) | Area (%)
--- | --- | --- | ---
16.33 | 1.70 | 36.69 | 0.3644
33.91 | 182.28 | 10033.12 | 99.6356
<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.80</td>
<td>396.56</td>
<td>13900.46</td>
<td>49.7210</td>
</tr>
<tr>
<td>33.14</td>
<td>269.70</td>
<td>14056.47</td>
<td>50.2790</td>
</tr>
<tr>
<td>20.65</td>
<td>38.96</td>
<td>1327.77</td>
<td>7.2178</td>
</tr>
<tr>
<td>32.88</td>
<td>327.51</td>
<td>17067.82</td>
<td>92.7822</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>-----------</td>
</tr>
<tr>
<td>22.38</td>
<td>303.33</td>
<td>10676.89</td>
<td>67.6525</td>
</tr>
<tr>
<td>37.37</td>
<td>91.42</td>
<td>5105.08</td>
<td>32.3475</td>
</tr>
</tbody>
</table>
Table 1: Gas Chromatography Data

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>21.80</td>
<td>71.67</td>
<td>2396.39</td>
<td>49.6462</td>
</tr>
<tr>
<td>33.54</td>
<td>47.68</td>
<td>2430.55</td>
<td>50.3538</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>22.03</td>
<td>2.39</td>
<td>74.34</td>
<td>2.0147</td>
</tr>
<tr>
<td>34.01</td>
<td>68.63</td>
<td>3615.59</td>
<td>97.9853</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------</td>
</tr>
<tr>
<td>23.91</td>
<td>79.85</td>
<td>4639.69</td>
<td>49.9284</td>
</tr>
<tr>
<td>38.07</td>
<td>54.82</td>
<td>4653.00</td>
<td>50.0716</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23.77</td>
<td>16.64</td>
<td>575.76</td>
<td>2.1027</td>
</tr>
<tr>
<td>38.06</td>
<td>457.10</td>
<td>26806.06</td>
<td>97.8973</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>29.25</td>
<td>97.22</td>
<td>4585.79</td>
<td>49.5726</td>
</tr>
<tr>
<td>31.29</td>
<td>81.86</td>
<td>4664.86</td>
<td>50.4274</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.38</td>
<td>4.18</td>
<td>151.71</td>
<td>1.8744</td>
</tr>
<tr>
<td>31.30</td>
<td>134.51</td>
<td>7941.72</td>
<td>98.1256</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>30.70</td>
<td>405.05</td>
<td>27707.89</td>
<td>100.0000</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>12.35</td>
<td>349.45</td>
<td>6517.17</td>
<td>49.3617</td>
</tr>
<tr>
<td>13.99</td>
<td>351.33</td>
<td>6685.72</td>
<td>50.6383</td>
</tr>
<tr>
<td>12.67</td>
<td>13.94</td>
<td>236.05</td>
<td>3.4659</td>
</tr>
<tr>
<td>14.36</td>
<td>347.61</td>
<td>6574.59</td>
<td>96.5341</td>
</tr>
</tbody>
</table>
Table 1

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.22</td>
<td>176.77</td>
<td>4160.39</td>
<td>50.1175</td>
</tr>
<tr>
<td>17.04</td>
<td>147.07</td>
<td>4140.88</td>
<td>49.8825</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Retention time (min)</th>
<th>Height (mv)</th>
<th>Area (mv.sec)</th>
<th>Area (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.25</td>
<td>241.01</td>
<td>5629.88</td>
<td>77.8174</td>
</tr>
<tr>
<td>17.06</td>
<td>57.83</td>
<td>1604.86</td>
<td>22.1826</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>8.93</td>
<td>28.16</td>
<td>419.97</td>
<td>6.2084</td>
</tr>
<tr>
<td>10.43</td>
<td>22.83</td>
<td>427.21</td>
<td>6.3155</td>
</tr>
<tr>
<td>12.78</td>
<td>71.92</td>
<td>1284.72</td>
<td>18.9921</td>
</tr>
<tr>
<td>14.99</td>
<td>72.99</td>
<td>1658.85</td>
<td>24.5227</td>
</tr>
<tr>
<td>16.40</td>
<td>49.78</td>
<td>1297.67</td>
<td>19.1835</td>
</tr>
<tr>
<td>28.00</td>
<td>43.08</td>
<td>1676.10</td>
<td>24.7778</td>
</tr>
<tr>
<td>Retention time (min)</td>
<td>Height (mv)</td>
<td>Area (mv.sec)</td>
<td>Area (%)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------</td>
<td>---------------</td>
<td>----------</td>
</tr>
<tr>
<td>8.95</td>
<td>6.73</td>
<td>103.38</td>
<td>0.8193</td>
</tr>
<tr>
<td>10.45</td>
<td>31.49</td>
<td>651.74</td>
<td>5.1656</td>
</tr>
<tr>
<td>12.81</td>
<td>239.59</td>
<td>4679.10</td>
<td>37.0859</td>
</tr>
<tr>
<td>15.23</td>
<td>36.99</td>
<td>1021.13</td>
<td>8.0934</td>
</tr>
<tr>
<td>16.67</td>
<td>16.88</td>
<td>316.07</td>
<td>2.5051</td>
</tr>
<tr>
<td>27.97</td>
<td>144.71</td>
<td>5845.52</td>
<td>46.3307</td>
</tr>
</tbody>
</table>