A tandem elimination–cyclization–desulfitative arylation reaction of 2-(gem-dibromovinyl)phenols(thiophenols) with sodium arylsulfinates

Wei Chen,† Pinhua Li,† Tao Miao,† Ling-Guo Meng,*† and Lei Wang*†,‡

† Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China

‡ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry

Shanghai 200032, P. R. China

leiwang@chnu.edu.cn

Table of Contents for Supporting Information

1. General considerations ...2

2. Typical procedure ...2

3. Characterization data for all products ...3

4. 1H and 13C NMR spectra of the products11

5. References ...33
1. General considerations

All the tandem reactions of 2-(gem-dibromovinyl)phenols (thiophnols) with sodium arylsulfinate were carried out under a nitrogen atmosphere. 1H and 13C NMR spectra were measured on a Bruker Avance 400 MHz NMR spectrometer (400 MHz or 100 MHz, respectively) with CDCl$_3$ as solvent and recorded in ppm relative to internal tetramethylsilane standard. High resolution mass spectroscopy data of the product were collected on a Waters Micromass GCT instrument. The solvents and general chemicals were purchased from commercial suppliers and used without further purification. All the gem-dibromovinyl substrates were synthesized according to the reported procedures in the literature (Newman, S. G.; Aureggi, V.; Bryan, C. S.; Lautens, M. Chem. Commun. 2009, 5236–5238).

2. Typical procedure for the tandem elimination–cyclization–desulfative arylation reaction

A sealable reaction tube equipped with a magnetic stirrer bar was charged with gem-dibromovinyl substrate (0.50 mmol), TBAF (1.0 mmol) and DMF (3.0 mL). The reaction mixture was stirred for 4 h at room temperature, than sodium arylsulfinate (1.0 mmol), PdCl$_2$ (0.050 mmol), Cu(OAc)$_2$ (1.0 mmol), NEt$_3$ (1.0 mmol) were added to the reaction system. The rubber septum was then replaced by a Teflon-coated screw cap, and the reaction vessel placed in an oil bath at 110 °C. After stirring the mixture at this temperature for 12 h, it was cooled to room temperature and diluted with ethyl acetate, washed with water and brine, dried over MgSO$_4$. After the solvent was removed under reduced pressure, the residue was purified by column chromatography on silica gel (eluant: petroleum ether) to afford the corresponding product.
3. Characterization data for all products

![Chemical structure](image)

3a:[^1] mp 120–121 °C.

^1^H NMR (400 MHz, CDCl₃): δ = 7.90 (d, J = 8.0 Hz, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.55 (d, J = 8.0 Hz, 1H), 7.49–7.46 (m, 2H), 7.40–7.36 (m, 1H), 7.33–7.24 (m, 2H), 7.05 (s, 1H); ^13^C NMR (100 MHz, CDCl₃): δ = 155.9, 154.9, 130.5, 129.2, 128.8, 128.5, 124.9, 124.2, 122.9, 120.9, 111.2, 101.3.

![Chemical structure](image)

3b:[^1] mp 155–156 °C.

^1^H NMR (400 MHz, CDCl₃): δ = 7.83–7.81 (m, 2H), 7.51–7.50 (m, 1H), 7.45–7.33 (m, 4H), 7.22–7.19 (m, 1H), 6.91 (s, 1H); ^13^C NMR (100 MHz, CDCl₃): δ = 157.4, 153.2, 130.6, 129.9, 129.0, 128.8, 128.5, 125.0, 124.4, 120.4, 112.1, 100.8.

![Chemical structure](image)

3c:[^1] mp 131–132 °C.

^1^H NMR (400 MHz, CDCl₃): δ = 7.87 (d, J = 8.0 Hz, 2H), 7.48–7.42 (m, 3H), 7.37 (t, J = 8.0 Hz, 1H), 7.07 (d, J = 2.8 Hz, 1H), 6.98 (s, 1H), 6.92 (dd, J = 8.0, 2.8 Hz, 1H), 3.88 (s, 3H); ^13^C NMR (100 MHz, CDCl₃): δ = 156.7, 156.1, 150.0, 130.6, 129.8, 128.8, 128.5, 124.9, 113.0, 111.6, 103.3, 101.5, 55.9.
3d: \(^{[1]}\) mp 129–130 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.88 \text{ (d, } J = 8.0 \text{ Hz, } 2\text{H}), 7.48–7.34 \text{ (m, } 5\text{H}), 7.12 \text{ (d, } J = 8.0 \text{ Hz, } 1\text{H}), 6.97 \text{ (s, } 1\text{H}), 2.47 \text{ (s, } 3\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 156.0, 153.3, 132.3, 129.3, 128.8, 128.4, 125.5, 124.9, 120.7, 110.7, 101.1, 21.4.\)

3e: \(^{[1]}\) mp 103–104 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.93–7.91 \text{ (m, } 2\text{H}), 7.65 \text{ (s, } 1\text{H}), 7.52–7.48 \text{ (m, } 3\text{H}), 7.43–7.39 \text{ (m, } 2\text{H}), 7.05 \text{ (s, } 1\text{H}), 1.46 \text{ (s, } 9\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 156.0, 153.2, 146.0, 130.7, 128.9, 128.7, 128.3, 124.8, 122.2, 117.1, 110.4, 101.5, 34.7, 31.8.\)

3f: \(^{[1]}\) mp 78–79 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.84 \text{ (d, } J = 8.0 \text{ Hz, } 2\text{H}), 7.47–7.43 \text{ (m, } 3\text{H}), 7.36–7.32 \text{ (m, } 1\text{H}), 7.00 \text{ (d, } J = 1.6 \text{ Hz, } 1\text{H}), 6.97 \text{ (s, } 1\text{H}), 6.90 \text{ (dd, } J = 8.0, 2.4 \text{ Hz, } 1\text{H}), 3.89 \text{ (s, } 3\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 158.1, 155.9, 155.1, 130.7, 128.7, 128.0, 124.4, 122.6, 121.0, 112.0, 101.1, 95.9, 55.7.\)
3g. \(^{[1]}\) mp 151–152 °C.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.51\) (d, \(J = 2.4\) Hz, 1H), 8.22 (dd, \(J = 8.8, 2.4\) Hz, 1H), 7.90–7.88 (m, 2H), 7.60 (d, \(J = 9.2\) Hz, 1H), 7.52–7.48 (m, 2H), 7.46–7.42 (m, 1H), 7.13 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 159.3, 157.6, 144.3, 129.7, 129.6, 129.2, 129.0, 125.3, 120.1, 117.2, 111.4, 101.6.\)

3h. \(^{[1]}\) mp 78–79 °C.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.94–7.92\) (m, 2H), 7.49–7.45 (m, 2H), 7.39–7.36 (m, 1H), 7.23–7.16 (m, 2H), 7.04 (s, 1H), 6.84 (d, \(J = 8.0\) Hz, 1H), 4.08 (s, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 156.1, 145.4, 144.2, 131.0, 130.4, 128.7, 128.6, 125.1, 123.6, 113.4, 106.7, 101.7, 56.2.\)

3i. \(^{[2]}\) mp 128–129 °C.

\(^{1}\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.89\) (d, \(J = 8.0\) Hz, 2H), 7.50–7.40 (m, 4H), 7.28 (d, \(J = 1.6\) Hz, 1H), 6.98 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 158.1, 149.2, 131.5, 129.4, 129.3, 128.9, 128.7, 125.2, 124.3, 119.0, 117.1, 101.2.\)
3j: mp 60–61 °C.

1H NMR (400 MHz, CDCl$_3$): δ = 7.85–7.83 (m, 2H), 7.43–7.39 (m, 2H), 7.33–7.29 (m, 1H), 7.16 (s, 1H), 6.90–6.88 (m, 2H), 2.52 (s, 3H), 2.39 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 155.6, 152.4, 132.3, 130.8, 128.8, 128.7, 128.2, 126.6, 124.8, 120.8, 118.1, 101.3, 21.3, 15.0.

3k: mp 142–143 °C.

1H NMR (400 MHz, CDCl$_3$): δ = 8.20 (d, J = 8.0 Hz, 1H), 7.98–7.94 (m, 3H), 7.76–7.70 (m, 2H), 7.64–7.60 (m, 1H), 7.55 (s, 1H), 7.53–7.48 (m, 3H), 7.39–7.36 (m, 1H); 13C NMR (100 MHz, CDCl$_3$): δ = 155.4, 152.4, 130.7, 130.4, 128.9, 128.8, 128.3, 127.6, 126.3, 125.2, 124.7, 124.6, 124.5, 123.5, 112.3, 100.5.

3l: mp 174–176 °C.

1H NMR (400 MHz, CDCl$_3$): δ = 7.87–7.85 (m, 1H), 7.81–7.79 (m, 1H), 7.76–7.74 (m, 2H), 7.58 (s, 1H), 7.47–7.44 (m, 2H), 7.40–7.32 (m, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 144.2, 140.7, 139.5, 134.3, 128.9, 128.2, 126.5, 124.5, 124.3, 123.5,
122.2, 119.4.

\[
\text{Cl} \\
\begin{array}{c}
\text{S} \\
\text{H}
\end{array}
\]

3m: \([1]\) mp 111–112 °C.

\[^1\text{H} \text{ NMR (400 MHz, CDCl}_3\text{)}: \delta = 7.77–7.71 \text{ (m, 4H), 7.48–7.45 \text{ (m, 2H), 7.41–7.37 (m, 2H), 7.27–7.23 \text{ (m, 1H);} \ \text{^1\text{C NMR (100 MHz, CDCl}_3\text{)}:} \ \delta = 145.2, 140.4, 138.9, 133.7, 129.0, 128.6, 128.4, 126.5, 124.8, 124.4, 120.7, 117.6.}
\]

\[
\begin{array}{c}
\text{H} \\
\text{S}
\end{array}
\]

4a: \([3]\) mp 126–127 °C.

\[^1\text{H} \text{ NMR (400 MHz, CDCl}_3\text{)}: \delta = 7.79 \text{ (d, } J = 8.0 \text{ Hz, 2H), 7.61–7.53 \text{ (m, 2H), 7.32–7.23 \text{ (m, 4H), 6.99 (s, 1H), 2.43 (s, 3H);} \ \text{^1\text{C NMR (100 MHz, CDCl}_3\text{)}:} \ \delta = 156.2, 154.8, 138.6, 129.5, 129.4, 127.8, 124.9, 124.0, 122.9, 120.7, 111.1, 100.6, 21.4.}
\]

\[
\begin{array}{c}
\text{H} \\
\text{S}
\end{array}
\]

4b: \([4]\) mp 148–149 °C.

\[^1\text{H} \text{ NMR (400 MHz, CDCl}_3\text{)}: \delta = 7.80 \text{ (d, } J = 8.0 \text{ Hz, 2H), 7.61 (d, } J = 7.2 \text{ Hz, 1H), 7.54 (d, } J = 8.0 \text{ Hz, 1H), 7.43 (d, } J = 8.0 \text{ Hz, 2H), 7.35–7.25 \text{ (m, 2H), 7.01 (s, 1H);} \ \text{^1\text{C NMR (100 MHz, CDCl}_3\text{)}:} \ \delta = 154.9, 154.8, 134.3, 129.1, 129.0, 129.0, 126.1, 124.6, 123.1, 121.0, 111.2, 101.8.}
\]
$4c^{[5]}$ mp 148–149 °C.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.74$ (d, $J = 8.0$ Hz, 2H), 7.61–7.53 (m, 4H), 7.34–7.24 (m, 2H), 7.03 (s, 1H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 154.9$, 154.7, 131.9, 129.4, 129.0, 126.3, 124.6, 123.1, 122.5, 121.0, 111.2, 101.8.

$4d^{[6]}$ mp 128–129 °C.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.85$ (d, $J = 8.0$ Hz, 2H), 7.62 (d, $J = 7.2$ Hz, 1H), 7.57 (d, $J = 8.0$ Hz, 1H), 7.52 (d, $J = 8.0$ Hz, 2H), 7.34–7.25 (m, 2H), 7.02 (s, 1H), 1.41 (s, 9H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 156.2$, 154.9, 151.8, 129.4, 127.8, 125.8, 124.8, 124.0, 122.9, 120.8, 111.2, 100.7, 34.8, 31.3.

$4e^{[3]}$ mp 149–150 °C.

1H NMR (400 MHz, CDCl$_3$): $\delta = 7.82$ (d, $J = 8.8$ Hz, 2H), 7.58–7.57 (m, 1H), 7.53–7.51 (m, 1H), 7.29–7.22 (m, 2H), 7.00 (d, $J = 8.8$ Hz, 2H), 6.91 (s, 1H), 3.88 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): $\delta = 160.0$, 156.1, 154.7, 129.5, 126.4, 123.7, 123.4, 122.8, 120.6, 114.3, 111.0, 99.7, 55.4.
4f: \([17]\) mp 183–184 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.31 (d, J = 8.4 \text{ Hz}, 2\text{H}), 8.01 (d, J = 8.4 \text{ Hz}, 2\text{H}), 7.66–7.64 (m, 1\text{H}), 7.58–7.56 (m, 1\text{H}), 7.40–7.36 (m, 1\text{H}), 7.31–7.27 (m, 1\text{H}), 7.24 (s, 1\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 155.4, 153.2, 147.2, 136.3, 128.6, 125.8, 125.2, 124.3, 123.5, 121.6, 111.5, 105.1.\)

4g: \([3]\) mp 119–120 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.87–7.84 (m, 2\text{H}), 7.61–7.60 (m, 1\text{H}), 7.56–7.54 (m, 1\text{H}), 7.34–7.27 (m, 2\text{H}), 7.19–7.14 (m, 2\text{H}), 6.97 (s, 1\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 162.8 (d, J = 247.2 \text{ Hz}), 155.0, 154.8, 129.1, 126.7 (d, J = 8.1 \text{ Hz}), 124.3, 123.0, 120.9, 115.8 (d, J = 21.8 \text{ Hz}), 111.1, 101.0, 100.9.\)

4h: \([8]\) mp 77–78 °C.

\(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.74–7.70 (m, 2\text{H}), 7.61 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.56 (d, J = 8.0 \text{ Hz}, 1\text{H}), 7.39–7.24 (m, 3\text{H}), 7.21–7.19 (m, 1\text{H}), 7.04 (s, 1\text{H}), 2.46 (s, 3\text{H}); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 156.1, 154.9, 138.4, 130.4, 129.4, 129.3, 128.7, 125.5, 124.2, 122.9, 122.1, 120.8, 111.1, 101.2, 21.5.\)
4i: mp 98–99 °C.

1H NMR (400 MHz, CDCl$_3$): δ = 7.86–7.84 (m, 1H), 7.61 (d, $J = 8.0$ Hz, 1H), 7.53 (d, $J = 8.0$ Hz, 1H), 7.32–7.28 (m, 4H), 7.26–7.24 (m, 1H), 6.90 (s, 1H), 2.59 (s, 3H); 13C NMR (100 MHz, CDCl$_3$): δ = 155.7, 154.4, 135.9, 131.2, 130.0, 129.2, 128.5, 128.2, 126.1, 124.2, 122.8, 120.9, 111.1, 105.1, 21.9.
4. 1H and 13C NMR spectra of the products

![NMR spectra of 3a](image)

![NMR spectra of 3a](image)
5. References

