Supplementary Information

Highly Efficient and Chemoselective α-Iodination of Acrylate Esters through Morita-Baylis-Hillman-type Chemistry

Vittorio Pace,*a,b Gytė Vilkauskaitė,a,c Algirdas Šačkusc and Wolfgang Holzer*a

a Department of Drug and Natural Product Synthesis, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria. Fax: +43-1-4277-9556; Tel: +43-1-4277-55623; E-mail: vpace@farm.ucm.es
b Department of Organic and Pharmaceutical Chemistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, 28040, Madrid, Spain.
c Institute of Synthetic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, 50254 Kaunas, Lithuania

Table of Content

1. General Information .. 2
2. Procedures and Characterization Data .. 2
 2.1. General Procedure for Synthesis of 2-Iodoacrylates ... 2
 2.2. Physical Characterization Data .. 2
 2.3. Procedure for NKH Reaction and Physical Characterization Data 6
3. 1H and 13C NMR Spectra .. 7
1. General Information

1H, 13C and 15N NMR spectra were recorded on a Bruker Avance 400 spectrometer (400.23 MHz for 1H, 100.65 MHz for 13C, 40.56 MHz for 15N) or a Bruker Avance 500 spectrometer (500.13 MHz for 1H, 125.77 MHz for 13C) at 25 °C. The center of the solvent signal was used as an internal standard, which was related to TMS with δ 7.26 ppm (1H in CDCl$_3$) and δ 77.0 ppm (13C in CDCl$_3$). Digital resolutions were 0.25 Hz/data point in the 1H spectra and 0.4 Hz/data point in the 13C NMR spectra. Systematic names were generated with ACD/Name according to the IUPAC recommendations. For chromatographic separations, Kieselgel 60 (70–230 mesh, Merck) was used. Acrylate esters were supplied from Sigma-Aldrich, Alfa Aesar, Acros and TCI and used as received. N-iodophthalimide was prepared as previously reported.1, 2

α-Iodo esters must be kept under Argon at -20°C dissolved in anhydrous benzene to avoid decomposition.

2. Procedures and Characterization Data

2.1. General Procedure for Synthesis of 2-Iodoacrylates

To a stirred solution of an appropriate acrylate (3.0 mmol, 1 equiv) in acetonitrile (15 mL) N-iodophthalimide (1.23 g, 4.5 mmol, 1.5 equiv.), 3-quinuclidinol (76 mg, 0.6 mmol, 0.2 equiv.) and KF-Celite (50% w/w) (383 mg, 3.3 mmol, 1.1 equiv.) were added successively. After stirring the reaction mixture for 24 h at room temperature, saturated aq. sodium thiosulfate solution was added, followed by the addition of ethyl acetate. The separated organic phase was dried over sodium sulfate, filtered and the solvent was removed under reduced pressure. The crude mixture was then purified as reported below.

2.2. Physical Characterization Data

Allyl 2-iodoacrylate (2): By following the general procedure starting from 1 (336 mg, 0.36 mL, 3.0 mmol). Compound 2 was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 10%) in 83% yield (593 mg). 1H NMR (CDCl$_3$, 400 MHz) δ 4.70 (m, J = 5.7, 1.5, 1.3 Hz, 2H, 2H A), 5.28 (m, J = 10.5, 1.3, 1.3 Hz, 1H, H’cis), 5.38 (m, J = 17.2, 1.5, 1.5 Hz, 1H, H’trans), 5.94 (m, J = 17.2, 10.5, 5.7, 5.7 Hz, 1H, H$_{\text{cis}}$). 13C NMR (CDCl$_3$, 100 MHz) δ 67.3 (C A), 96.2 (2J(C-2,H$_{\text{trans}}$) = 5.1 Hz, C-2), 118.8 (C C), 131.3 (C B), 139.9 (1J(C-3,H$_{\text{cis}}$) = 166.9 Hz, 3J(CO,H$_{\text{cis}}$) = 5.5 Hz, 3J(CO,OCH$_2$) = 3.2 Hz, CO). IR (KBr) ν cm$^{-1}$ 1713, 1254. GC-MS m/z 237.9.

Benzyl 2-iodoacrylate (3a): By following the general procedure starting from 3 (487 mg, 0.46 mL, 3.0 mmol). Compound 3a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 5%) in 76% yield (657 mg). 1H NMR (CDCl$_3$, 400 MHz) δ 5.25 (s, 2H, C$_{\text{H}_2}$), 6.61 (d, J = 1.3 Hz, 1H, H$_{\text{trans}}$), 7.37 (m, 3H, Ph H-3,4,5), 7.39 (m, 2H, Ph H-2,6), 7.48 (d, J = 1.3 Hz, 1H, H$_{\text{cis}}$). 13C NMR (CDCl$_3$, 100 MHz) δ 68.5 (CH$_2$), 96.3 (2J(C-2,H$_{\text{trans}}$) =
5.1 Hz, C-2), 128.1 (Ph C-2,6), 128.4 (Ph C-4), 128.6 (Ph C-3,5), 135.2 (Ph C-1), 140.1 (C-3), 162.2 (\(^3\)J(CO,H\text{trans}) = 11.7 Hz, \(^3\)J(CO,H\text{cis}) = 5.5 Hz, CO). IR (KBr) v cm\(^{-1}\) 3077, 1715, 1251. GC-MS m/z 287.9.

Phenyl 2-iodoacrylate (4a): By following the general procedure starting from 4 (444 mg, 0.41 mL, 3.0 mmol). Compound 4a was obtained as a yellow liquid after column chromatography on silica gel (hexanes/AcOEt 10%) in 69% yield (567 mg). 1H NMR (CDCl\(_3\), 400 MHz) δ 6.76 (d, \(J = 1.5\) Hz, 1H, H\text{trans}), 7.15 (m, 2H, Ph H-2,6), 7.27 (m, 1H, Ph H-4), 7.41 (m, 2H, Ph H-3,5), 7.67 (d, \(J = 1.5\) Hz, 1H, H\text{cis}). 13C NMR (CDCl\(_3\), 100 MHz) δ 95.4 (\(^2\)J(C-2, H\text{trans}) = 5.1 Hz, C-2), 121.2 (Ph C-2,6), 126.2 (Ph C-4), 129.5 (Ph C-3,5), 141.4 (\(^1\)J(C-3, H\text{cis}) = 167.1 Hz, \(^1\)J(C-3, H\text{trans}) = 162.9 Hz, C-3), 150.9 (Ph C-1), 160.9 (\(^3\)J(CO,H\text{trans}) = 12.2 Hz, \(^3\)J(CO,H\text{cis}) = 5.7 Hz, CO). IR (KBr) v cm\(^{-1}\) 3081, 1711, 1248. GC-MS m/z 273.9.

2-Phenoxyethyl 2-iodoacrylate (5a): By following the general procedure starting from 5 (577 mg, 0.52 mL, 3.0 mmol). Compound 5a was obtained as a brown thick oil after column chromatography on silica gel (hexanes/acetone 20%) in 93% yield (887 mg). 1H NMR (CDCl\(_3\), 400 MHz) δ 4.23 (m, 2H, 2HB), 4.56 (m, 2H, 2HA), 6.62 (d, \(J = 1.5\) Hz, 1H, H\text{trans}), 6.93 (m, 2H, Ph H-2,6), 6.98 (m, 1H, Ph H-4), 7.30 (m, 2H, Ph H-3,5), 7.46 (d, \(J = 1.5\) Hz, 1H, H\text{cis}). 13C NMR (CDCl\(_3\), 100 MHz) δ 65.1 (C A), 65.5 (C B), 96.1 (\(^2\)J(C-2, H\text{trans}) = 5.1 Hz, C-2), 114.7 (Ph C-2,6), 121.3 (Ph C-4), 129.5 (Ph C-3,5), 140.3 (\(^1\)J(C-3, H\text{trans}) = 166.9 Hz, \(^1\)J(C-3, H\text{cis}) = 162.7 Hz, C-3), 158.4 (Ph C-1), 162.3 (\(^3\)J(CO,H\text{trans}) = 11.7 Hz, \(^3\)J(CO,H\text{cis}) = 5.5 Hz, \(^3\)J(CO,OCH\(_2\)) = 3.0 Hz, CO). IR (KBr) v cm\(^{-1}\) 3079, 1717, 1247. 1224. GC-MS m/z 317.9.

2-Hydroxyethyl 2-iodoacrylate (6a): By following the general procedure starting from 6 (348 mg, 0.34 mL, 3.0 mmol). Compound 6a was obtained as a yellow liquid after column chromatography on silica gel (dichloromethane/acetone 5%) in 66% yield (479 mg). 1H NMR (CDCl\(_3\), 400 MHz) δ 2.27 (br s, 1H, O\text{H}), 3.86 (m, 2H, 2H B), 4.32 (m, 2H, 2H A), 6.60 (d, \(J = 1.4\) Hz, 1H, H\text{trans}), 7.47 (d, \(J = 1.4\) Hz, 1H, H\text{cis}). 13C NMR (CDCl\(_3\), 100 MHz) δ 60.8 (\(^1\)J(CB,HB) = 142.9 Hz, 2\(^2\)J(CB,HA) = 2.0 Hz, C B), 68.2 (\(^1\)J(CA,HA) = 148.1 Hz, 2\(^2\)J(CA,HB) = 1.1 Hz, C A), 95.7 (\(^2\)J(C-2, H\text{trans}) = 5.1 Hz, C-2), 140.3 (\(^1\)J(C-3, H\text{trans}) = 167.1 Hz, \(^1\)J(C-3, H\text{cis}) = 162.6 Hz, C-3), 162.6 (\(^3\)J(CO,H\text{trans}) = 11.7 Hz, \(^3\)J(CO,H\text{cis}) = 5.5 Hz, \(^3\)J(CO,OCH\(_3\)) = 3.0 Hz, CO). IR (KBr) v cm\(^{-1}\) 3443, 1711, 1252. 1218. GC-MS m/z 241.9.

2-Methoxyethyl 2-iodoacrylate (7a): By following the general procedure starting from 7 (390 mg, 0.39 mL, 3.0 mmol). Compound 7a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 10%) in 82% yield (657 mg). 1H NMR (CDCl\(_3\), 400 MHz) δ 3.40 (s, 3H, C\text{H}_3), 3.64 (m, 2H, 2HB), 4.35 (m, 2H, 2HA), 6.61 (d, \(J = 1.4\) Hz, 1H, H\text{trans}), 7.46 (d, \(J = 1.4\) Hz, 1H, H\text{cis}). 13C NMR (CDCl\(_3\), 100 MHz) δ 59.1 (\(^1\)J(OCH\(_3\)) = 141.3 Hz, \(^3\)J(OCH\(_3\),OCH\(_3\)) = 3.5 Hz, CH\(_3\)), 65.8 (\(^1\)J(C\text{A},H\text{A}) = 148.1 Hz, \(^2\)J(C\text{A},H\text{B}) = 1.6 Hz, C\text{A}), 70.1 (C\text{B}), 96.3 (\(^3\)J(C-2,H\text{trans}) = 5.1 Hz, C-2), 140.0 (\(^1\)J(C-3,H\text{trans}) = 166.8 Hz, \(^1\)J(C-3, H\text{cis}) = 162.7 Hz, C-3), \(^3\)J(C-3,H\text{cis}) = 5.7 Hz, CO). IR (KBr) v cm\(^{-1}\) 3077, 1715, 1251. GC-MS m/z 287.9.
162.4 (3J(CO,Htrans) = 11.7 Hz, 3J(CO,Hcis) = 5.5 Hz, 3J(CO,OCH$_2$) = 2.9 Hz, CO). IR (KBr) ν cm$^{-1}$ 1709, 1251, 1226. GC-MS m/z 255.9.

Tetrahydrofuran-2-ylmethyl 2-iodoacrylate (8a): By following the general procedure starting from 8 (438 mg, 0.44 mL, 3.0 mmol). Compound 8a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 10%) in 75% yield (635 mg). 1H NMR (CDCl$_3$, 400 MHz) δ 1.68 (m, 1H, Fur H-3), 1.86–1.99 (m, 2H, Fur 2H-4), 2.02 (m, 1H, Fur H-3), 3.80 (m, 1H, Fur H-5), 3.88 (m, 1H, Fur H-5), 4.16 (m, 1H, CH$:B$), 4.17 (m, 1H, Fur H-2), 4.24 (m, 1H, CH$:A$), 6.59 (d, J = 1.4 Hz, 1H, Htrans), 7.46 (d, J = 1.4 Hz, 1H, Hcis). ^{13}C NMR (CDCl$_3$, 100 MHz) δ 25.7 (Fur C-4), 27.9 (Fur C-3), 68.57 (Fur C-5), 68.63 (CH$:B$), 76.2 (Fur C-2), 96.1 (2J(C-2,Htrans) = 5.1 Hz, C-2), 140.0 (1J(C-3,Htrans) = 166.9 Hz, 1J(C-3,Hcis) = 162.5 Hz, C-3), 162.4 (3J(CO,Htrans) = 11.7 Hz, 3J(CO,Hcis) = 5.5 Hz, CO). IR (KBr) ν cm$^{-1}$ 1711, 1252. 1216. GC-MS m/z 281.9.

2-[2-(2-oxiranyl)acetoxy]ethyl 2-iodoacrylate (9a): By following the general procedure starting from 9 (601 mg, 3.0 mmol). Compound 3a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 5%) in 73% yield (714 mg). 1H NMR (CDCl$_3$, 500 MHz) δ 2.94 (dd, J = 16.9, 9.5 Hz, 1H), 3.44 (dd, J = 16.8, 3.6 Hz, 1H), 3.79 (dd, J = 11.9, 9.9 Hz, 1H), 4.07 (dd, J = 9.9, 4.0 Hz, 1H), 4.47–4.39 (m, 4H), 4.53 (ddt, J = 11.9, 9.6, 3.8 Hz, 1H), 6.63 (d, J = 1.5 Hz, 1H), 7.49 (d, J = 1.5 Hz, 1H). ^{13}C NMR (CDCl$_3$, 125 MHz,) δ 12.5, 20.9, 45.1, 62.5, 64.4, 95.9, 140.5, 140.7, 162.3, 169.9. IR (KBr) ν cm$^{-1}$ 1716, 1709, 1240. 1220. GC-MS m/z 325.9.

Methyl 2-iodoacrylate (10a): By following the general procedure, starting from 10 (258 mg, 0.27 mL, 3.0 mmol). Compound 10a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 10%) in 79% yield (502 mg). 1H NMR (CDCl$_3$, 400 MHz) δ 3.83 (s, 3H, CH$_3$), 6.58 (d, J = 1.4 Hz, 1H, Htrans), 7.43 (d, J = 1.4 Hz, 1H, Hcis). ^{13}C NMR (CDCl$_3$, 100 MHz) δ 53.7 (OCH$_3$) = 147.9 Hz, CH$_3$), 95.8 (1J(CH$_3$,CH$_3$) = 4.1 Hz, C-2), 139.9 (1J(CH$_3$,CH$_3$) = 166.9 Hz, C-3), 162.9 (3J(CO,Htrans) = 11.6 Hz, 3J(CO,Hcis) = 5.4 Hz, 3J(CO,OCH$_3$) = 3.8 Hz, CO). IR (KBr) ν cm$^{-1}$ 1713, 1232. GC-MS m/z 211.9.

2-Methyl-2-propanyl 2-iodoacrylate (11a): By following the general procedure starting from 11 (384 mg, 0.44 mL, 3.0 mmol). Compound 11a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 5%) in 88% yield (670 mg). 1H NMR (CDCl$_3$, 400 MHz) δ 1.49 (s, 9H, 3xCH), 6.50 (d, J = 1.3 Hz, 1H, Htrans), 7.31 (d, J = 1.3 Hz, 1H, Hcis). ^{13}C NMR (CDCl$_3$, 100 MHz) δ 27.8 (1J(CH$_3$) = 127.1 Hz, 3J(CH$_3$,CH$_3$) = 4.1 Hz, CH$_3$), 83.1 (1J(Cq,CH$_3$) = 4.1 Hz, Cq), 99.7 (1J(C-2, Htrans) = 4.9 Hz, C-2), 138.5 (1J(C-3,Htrans) = 166.3 Hz, 1J(C-3,Hcis) = 162.3 Hz, C-3), 161.3 (1J(CO,Htrans) = 11.2 Hz, 1J(CO,Hcis) = 5.3 Hz, CO). IR (KBr) ν cm$^{-1}$ 1719, 1254. 1221, 987. GC-MS m/z 253.9.
Ethyl 2-iodoacrylate (12a): By following the general procedure starting from 12 (300 mg, 0.32 mL, 3.0 mmol). Compound 12a was obtained as a brown liquid after column chromatography on silica gel (hexanes/AcOEt 15%) in 83% yield (563 mg). 1H NMR (CDCl₃, 400 MHz) δ 1.31 (t, J = 7.1 Hz, 3H, CH₃), 4.25 (q, J = 7.1 Hz, 2H, CH₂), 6.56 (d, J = 1.4 Hz, 1H, H trans), 7.41 (d, J = 1.4 Hz, 1H, H cis). 13C NMR (CDCl₃, 100 MHz) δ 14.1 (1J(CH₃) = 127.3 Hz, 2J(CH₂, CH₃) = 2.7 Hz, CH₃), 62.9 (1J(OCH₂) = 148.3 Hz, 2J(OCH₂, CH₃) = 4.4 Hz, CH₂), 96.8 (2J(C-2, H trans) = 5.1 Hz, C-2), 139.5 (1J(C-3, H cis) = 166.7 Hz, 2J(C-3, H trans) = 162.4 Hz, C-3), 162.4 (1J(CO, H trans) = 11.5 Hz, 2J(CO, H cis) = 5.4 Hz, 3J(CO, OCH₂) = 3.1 Hz, CO). IR (KBr) ν cm⁻¹ 1719, 1237. GC-MS m/z 225.9.

2-[(2-iodoacryloyl)oxy]ethyl 3-butenoate (13a): By following the general procedure starting from 13 (553 mg, 3.0 mmol). Compound 13a was obtained as a brown liquid after column chromatography on silica gel (hexanes/acetone 10%) in 87% yield (809 mg). 1H NMR (CDCl₃, 500 MHz) δ 3.12 (m, J = 6.9, 1.5 Hz, 2H), 4.39–4.30 (m, 2H), 4.48–4.38 (m, 2H), 5.18 (m, J = 13.3, 3.4, 1.6 Hz, 2H), 5.98–5.83 (m, 1H), 6.62 (d, J = 1.5 Hz, 1H), 7.45 (d, J = 1.5 Hz, 1H). 13C NMR (CDCl₃, 125 MHz,) δ 39.0, 62.4, 64.5, 95.9, 119.0, 130.0, 140.5, 162.3, 171.4. IR (KBr) ν cm⁻¹ 1719, 1711, 1252. 1211, 994. GC-MS m/z 309.9.

2-Hydroxy-3-(methacryloyloxy)propyl 2-iodoacrylate (14a): By following the general procedure starting from 14 (643 mg, 3.0 mmol). Compound 14a was obtained as a brown liquid after column chromatography on silica gel (dichloromethane/acetone 5%) in 72% yield (734 mg). 1H NMR (CDCl₃, 400 MHz) δ 1.94 (dd, J = 1.5, 1.0 Hz, 1H, CH₃), 2.73 (br s, 1H, OH), 4.19 (quint, J = 5.1 Hz, 1H, H B), 4.23–4.35 (m, 4H, 2HA, 2HB), 5.61 (m, J = 1.5, 1.5, 1.5, 1.5 Hz, 1H, H' trans), 6.13 (m, J = 1.5, 1.0, 1.0, 1.0 Hz, 1H, H' cis), 6.61 (d, J = 1.5 Hz, 1H, H trans), 7.47 (d, J = 1.5 Hz, 1H, H cis). 13C NMR (CDCl₃, 100 MHz) δ 18.2 (CH₂), 65.3 (CH₂), 67.2 (CH₂), 68.0 (Cb), 95.1 (1J(C=O, H' trans) = 5.0 Hz, C=O), 126.5 (1J(C=O, H' cis) = 158.5 Hz, C=O), 135.6 (1J(C=O, CH₃) = 6.6 Hz, 3J(C=O, CH₃) = 3.0 Hz, CO), 140.5 (1J(C=O, H' cis) = 167.2 Hz, 3J(C=O, H' trans) = 11.9 Hz, 3J(C=O, CH₃) = 5.5 Hz, 3J(C=O, OCH₂) = 2.8 Hz, CO), 167.3 (CD). IR (KBr) ν cm⁻¹ 3414, 1720, 1714, 1237. GC-MS m/z 339.9.

2-[(2E)-3-phenyl-2-propenoyl]oxy]ethyl 2-iodoprop-2-enoate (15a): By following the general procedure, starting from 15 (738 mg, 3.0 mmol). Compound 15a was obtained as a brown liquid after column chromatography on silica gel (chloroform/acetone 5%) in 81% yield (904 mg). 1H NMR (CDCl₃, 500 MHz) δ 4.66–4.34 (m, 4H), 6.45 (d, J = 16.1 Hz, 1H), 6.62 (d, J = 1.5 Hz, 1H), 7.41–7.34 (m, 3H), 7.47 (d, J = 1.5 Hz, 1H), 7.56–7.49 (m, 2H), 7.71 (d, J = 16.0 Hz, 1H). 13C NMR (CDCl₃, 125 MHz) δ 61.9, 64.6, 96.0, 117.4, 128.3, 129.0, 130.6, 134.3, 140.5, 145.7, 162.3, 166.7. IR (KBr) ν cm⁻¹ 3078, 1721, 1713, 1246, 1212. GC-MS m/z 371.9.
2.3. Procedure for NKH Reaction and Physical Characterization Data

To a stirred solution of 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde 17 (57 mg, 0.26 mmol) in abs. DMF (3 mL) 2-methyl-2-propanyl 2-iodoacrylate 11a (100 mg, 0.39 mmol), CrCl₂ (129 mg, 1.05 mmol) and NiCl₂ (1 mg, 0.005 mmol) were added. After stirring the reaction mixture for 24 h at room temperature, the solvent was evaporated under reduced pressure, the residue was dissolved in ethyl acetate, water was added and the mixture was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over Na₂SO₄, and evaporated. The residue was purified by flash chromatography with light petroleum/ethyl acetate = 1:3, v/v (Rf 0.3), affording the title compound 18 as a yellowish liquid in 89% yield (80 mg).

2-methyl-2-propanyl-2-[(5-chloro-3-methyl-1-phenyl-1H-pyrazol-4-yl)(hydroxyl)methyl]acrylate (18): ¹H NMR (CDCl₃, 400 MHz) δ 1.48 (s, 9H, 3xC₃H₃), 2.32 (s, 3H, Me), 3.00 (br s, 1H, OH), 5.62 (t, J = 1.3 Hz, 1H, CH), 5.76 (dd, J = 1.3, 1.7 Hz, 1H, H₄), 6.28 (dd, J = 1.3, 1.7 Hz, 1H, H₅), 7.38 (m, 1H, Ph H-4), 7.46 (m, 2H, Ph H-3,5), 7.51 (m, 2H, Ph H-2,6). ¹³C NMR (CDCl₃, 100 MHz) δ 13.5 (Me), 28.0 (3 x CH₃), 65.3 (C-OH), 81.8 (C(CH₃)₃), 116.4 (C-4), 124.8 (CH₂), 125.0 (Ph C-2,6), 126.0 (C-5), 128.1 (Ph C-4), 129.0 (Ph C-3,5), 138.2 (Ph C-1), 141.3 (C=CH₂), 148.9 (C-3), 165.8 (CO). ¹⁵N NMR (CDCl₃, 40 MHz) δ −173.2 (N-1), −79.2 (N-2). MS: 348.2.
3. 1H and 13C NMR Spectra

![NMR Spectra Image]
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013

13a