Supplementary Information

Reaction-based dual signaling of fluoride ions by resorufin sulfonates

by Hyun Gyu Im, Hong Yeong Kim, Myung Gil Choi, and Suk-Kyu Chang*
Department of Chemistry, Chung-Ang University, Seoul 156-756, Korea

Fig. S1. Changes in absorbance ratio A_{587}/A_{433} of 1 in the presence of various anions. ... S3
Fig. S2. Fluorescence intensity ratio I/I_0 at 591 nm of 1 in the presence of various anions. ... S3
Fig. S3. UV-vis spectra of 1, 1 + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. .. S4
Fig. S4. Fluorescence spectra of 1, 1 + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. .. S4
Fig. S5. Time trace for the changes in UV-vis absorbance of 1 at 587 nm in the presence of fluoride ions. .. S5
Fig. S6. UV-vis spectral changes of 1 upon titration with fluoride ions. S5
Fig. S7. Competitive signaling of fluoride ions by 1 in the presence of common anions as background. ... S6
Fig. S8. UV-vis spectral changes of 1-F- in the presence of common anions as background. ... S6
Fig. S9. Time trace for the changes in UV-vis absorbance of 2 at 587 nm in the presence of fluoride ions. ... S7
Fig. S10. Concentration dependent fluorescence signaling behavior of 2 for fluoride ions. ... S7
Fig. S11. Changes in UV-vis spectra of 2 in the presence of various anions. S8
Fig. S12. Changes in absorption intensity ratio A_{587}/A_{433} of 2 in the presence of various anions. ... S8
Fig. S13. Time trace for the changes in UV-vis absorbance of 3 at 587 nm in the presence of fluoride ions. ... S9
Fig. S14. Concentration dependent fluorescence signaling behavior of 3 for fluoride ions... S9
Fig. S15. Changes in fluorescence intensity ratio (I/I_0) at 591 nm of 1, 2 and 3 in the presence of fluoride and sulfide ions. ... S10
Fig. S16. Changes in fluorescence intensity ratio (I/I_o) at 591 nm of 1 and 1 + fluoride as a function of water content in CH$_3$CN. .. S10

Fig. S17. Fluorescence intensity ratio I/I_o at 591 nm of 1 in the presence of various anions. .. S11

Fig. S18. 1H NMR spectrum of 1 in DMSO-d$_6$. .. S11

Fig. S19. 13C NMR spectrum of 1 in DMSO-d$_6$. .. S12

Fig. S20. 1H NMR spectrum of 3 in DMSO-d$_6$. .. S12

Fig. S21. 13C NMR spectrum of 3 in DMSO-d$_6$. ... S13
Fig. S1. Changes in absorbance ratio A_{587}/A_{433} of 1 in the presence of various anions. [1] = 1.0×10^{-5} M, [A$^-$] in TBA salt = 1.0×10^{-4} M in CH$_3$CN.

![Absorbance Ratio Graph](image)

Fig. S2. Fluorescence intensity ratio I/I_0 at 591 nm of 1 in the presence of various anions. [1] = 5.0×10^{-6} M, [A$^-$] in TBA salt = 5.0×10^{-5} M in CH$_3$CN. λ_{ex} = 485 nm.

![Fluorescence Intensity Ratio Graph](image)
Fig. S3. UV-vis spectra of 1, 1 + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. [1] = [Resorufin] = 1.0 × 10^{-5} M, [TBA^+F^-] = 1.0 × 10^{-4} M in CH3CN.

Fig. S4. Fluorescence spectra of 1, 1 + tetrabutylammonium fluoride, resorufin + tetrabutylammonium fluoride. [1] = [Resorufin] = 5.0 × 10^{-6} M, [TBA^+F^-] = 5.0 × 10^{-5} M in CH3CN. \(\lambda_{ex} = 485 \text{ nm} \).
Fig. S5. Time trace for the changes in UV-vis absorbance of 1 at 587 nm in the presence of fluoride ions. [1] = 1.0 × 10^{-5} M, [TBA^+F^-] = 1.0 × 10^{-4} M in CH_3CN.

Fig. S6. UV-vis spectral changes of 1 upon titration with fluoride ions. [1] = 1.0 × 10^{-5} M, [TBA^+F^-] = from 0 to 5.5 × 10^{-5} M in CH_3CN.
Fig. S7. Competitive signaling of fluoride ions by 1 in the presence of common anions as background. [1] = 5.0 × 10⁻⁶ M, [F⁻] = [A⁻] in TBA salt = 5.0 × 10⁻⁵ M in CH₃CN. \(\lambda_{\text{ex}} = 485 \text{ nm} \). Other anions = Cl⁻, Br⁻, I⁻, AcO⁻, NO₃⁻, N₃⁻, ClO₄⁻, and HSO₄⁻.

Fig. S8. UV-vis spectral changes of 1-F⁻ in the presence of common anions as background. [1] = 1.0 × 10⁻⁵ M, [F⁻] = [A⁻] in TBA salt = 1.0 × 10⁻⁴ M in CH₃CN. Other anions = Cl⁻, Br⁻, I⁻, AcO⁻, NO₃⁻, N₃⁻, ClO₄⁻, and HSO₄⁻.
Fig. S9. Time trace for the changes in UV-vis absorbance of 2 at 587 nm in the presence of fluoride ions. [2] = 1.0 × 10⁻⁵ M, [TBA⁺F⁻] = 1.0 × 10⁻⁴ M in CH₃CN.

Fig. S10. Concentration-dependent fluorescence signaling behavior of 2 for fluoride ions. [2] = 5.0 × 10⁻⁶ M, [TBA⁺F⁻] = 0 ~ 1.2 × 10⁻⁵ M in CH₃CN. λₑₓ = 485 nm.
Fig. S11. Changes in UV-vis spectra of 2 in the presence of various anions. $[2] = 1.0 \times 10^{-5}$ M, $[A^-]$ in TBA salt = 1.0×10^{-4} M in CH$_3$CN.

Fig. S12. Changes in absorption intensity ratio A_{587}/A_{433} of 2 in the presence of various anions. $[2] = 1.0 \times 10^{-5}$ M, $[A^-]$ in TBA salt = 1.0×10^{-4} M in CH$_3$CN.
Fig. S13. Time trace for the changes in UV-vis absorbance of 3 at 587 nm in the presence of fluoride ions. \([3] = 1.0 \times 10^{-5} \text{ M}, [\text{TBA}^-\text{F}^-] = 1.0 \times 10^{-4} \text{ M}\) in CH\(_3\)CN.

Fig. S14. Concentration dependent fluorescence signaling behavior of 3 for fluoride ions. \([3] = 5.0 \times 10^{-6} \text{ M}, [\text{TBA}^-\text{F}^-] = 0 \sim 7.0 \times 10^{-4} \text{ M}\) in CH\(_3\)CN. \(\lambda_{\text{ex}} = 485 \text{ nm}\).
Fig. S15. Changes in fluorescence intensity ratio (I/I_o) at 591 nm of 1, 2, and 3 in the presence of fluoride and sulfide ions. [1] = [2] = [3] = 5.0×10^{-6} M, [TBA$^+$/F$^-$/] = [(TBA$^-$)$_2$S$_2^-$] = 5.0×10^{-5} M in CH$_3$CN. $\lambda_{ex} = 485$ nm.

Fig. S16. Changes in fluorescence intensity ratio (I/I_o) at 591 nm of 1 and 1 + fluoride as a function of water content in CH$_3$CN. [1] = 5.0×10^{-6} M, [TBA$^+$/F$^-$/] = 5.0×10^{-5} M in aqueous acetonitrile (water content: from 0 to 5%). $\lambda_{ex} = 485$ nm.
Fig. S17. Fluorescence intensity ratio I/I_0 at 591 nm of 1 in the presence of various anions. [1] = 1.0 × 10^{-5} M, [A^{-}] in TBA salt = 1.0 × 10^{-4} M in 1% aqueous acetonitrile solution. λ_{ex} = 485 nm.

![Graph showing fluorescence intensity ratios](image)

Fig. S18. 1H NMR spectrum of 1 in DMSO-d$_6$.

![NMR spectrum image](image)
Fig. S19. 13C NMR spectrum of 1 in DMSO-d$_6$.

Fig. S20. 1H NMR spectrum of 3 in DMSO-d$_6$.
Fig. S21. 13C NMR spectrum of 3 in DMSO-d$_6$.

![NMR Spectrum](image)