Stereoselective syntheses of racemic quercitols and bromoquercitols starting from cyclohexa-1,4-diene: *gala-*, *epi-*, *muco-* and *neo-*quercitol†

Gökay Aydın, Tahir Savran, Fatih Aktaş, Arif Baran,* and Metin Balci*†

*Department of Chemistry, Sakarya University, 54100 Sakarya, Turkey. E-mail:

†Department of Chemistry, Gebze institute of teknology, 41400 Gebze, Turkey.

*Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey. E-mail:

abaran@sakarya.edu.tr

mbalci@metu.edu.tr; Fax: +90-312-2103200; Tel: +90-312-2105140

Table of Contents

<table>
<thead>
<tr>
<th>Title</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>1</td>
</tr>
<tr>
<td>Experimental General</td>
<td>3</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 12</td>
<td>4</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 13</td>
<td>5</td>
</tr>
<tr>
<td>DEPT spectrum for 13</td>
<td>6</td>
</tr>
<tr>
<td>COSY spectrum for 13</td>
<td>7</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 14</td>
<td>8</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 15</td>
<td>9</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 16</td>
<td>10</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 18</td>
<td>11</td>
</tr>
<tr>
<td>DEPT spectrum for 18</td>
<td>12</td>
</tr>
<tr>
<td>APT spectrum for 18</td>
<td>12</td>
</tr>
<tr>
<td>COSY spectrum for 18</td>
<td>13</td>
</tr>
<tr>
<td>HETCOR spectrum for 18</td>
<td>14</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 19</td>
<td>15</td>
</tr>
<tr>
<td>DEPT spectrum for 19</td>
<td>16</td>
</tr>
<tr>
<td>APT spectrum for 19</td>
<td>16</td>
</tr>
<tr>
<td>COSY spectrum for 19</td>
<td>17</td>
</tr>
<tr>
<td>HETCOR spectrum for 19</td>
<td>18</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 20</td>
<td>19</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 20</td>
<td>20</td>
</tr>
<tr>
<td>DEPT spectrum for 20</td>
<td>21</td>
</tr>
<tr>
<td>COSY spectrum for 20</td>
<td>22</td>
</tr>
<tr>
<td>HETCOR spectrum for 20</td>
<td>23</td>
</tr>
<tr>
<td>'H- and 13C-NMR spectra for 21</td>
<td>24</td>
</tr>
<tr>
<td>Spectrum Type</td>
<td>Page</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>DEPT spectrum for 21</td>
<td>25</td>
</tr>
<tr>
<td>APT spectrum for 21</td>
<td>25</td>
</tr>
<tr>
<td>COSY spectrum for 21</td>
<td>26</td>
</tr>
<tr>
<td>HETCOR spectrum for 21</td>
<td>27</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 22</td>
<td>28</td>
</tr>
<tr>
<td>DEPT spectrum for 22</td>
<td>29</td>
</tr>
<tr>
<td>COSY spectrum for 22</td>
<td>30</td>
</tr>
<tr>
<td>COSY (expanded) spectrum for 22</td>
<td>30</td>
</tr>
<tr>
<td>HETCOR spectrum for 22</td>
<td>31</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 23</td>
<td>32</td>
</tr>
<tr>
<td>DEPT spectrum for 23</td>
<td>33</td>
</tr>
<tr>
<td>COSY spectrum for 23</td>
<td>34</td>
</tr>
<tr>
<td>HETCOR spectrum for 23</td>
<td>35</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 28</td>
<td>36</td>
</tr>
<tr>
<td>DEPT spectrum for 28</td>
<td>37</td>
</tr>
<tr>
<td>COSY spectrum for 28</td>
<td>38</td>
</tr>
<tr>
<td>HETCOR spectrum for 28</td>
<td>39</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 29</td>
<td>40</td>
</tr>
<tr>
<td>DEPT spectrum for 29</td>
<td>41</td>
</tr>
<tr>
<td>COSY spectrum for 29</td>
<td>42</td>
</tr>
<tr>
<td>HETCOR spectrum for 29</td>
<td>43</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 30</td>
<td>44</td>
</tr>
<tr>
<td>DEPT spectrum for 30</td>
<td>45</td>
</tr>
<tr>
<td>APT spectrum for 29</td>
<td>46</td>
</tr>
<tr>
<td>COSY spectrum for 30</td>
<td>47</td>
</tr>
<tr>
<td>HETCOR spectrum for 30</td>
<td>48</td>
</tr>
<tr>
<td>1H- NMR in CDCl$_3$ spectra for 32</td>
<td>49</td>
</tr>
<tr>
<td>HETCOR spectrum for 32</td>
<td>50</td>
</tr>
<tr>
<td>1H- NMR in C$_6$D$_6$ spectra for 32</td>
<td>51</td>
</tr>
<tr>
<td>COSY spectrum for 32</td>
<td>52</td>
</tr>
<tr>
<td>APT spectrum for 32</td>
<td>53</td>
</tr>
<tr>
<td>COSY spectrum for 32</td>
<td>54</td>
</tr>
<tr>
<td>HETCOR spectrum for 32</td>
<td>55</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 8</td>
<td>56</td>
</tr>
<tr>
<td>DEPT spectrum for 31</td>
<td>57</td>
</tr>
<tr>
<td>COSY spectrum for 31</td>
<td>58</td>
</tr>
<tr>
<td>HETCOR spectrum for 31</td>
<td>59</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 33</td>
<td>60</td>
</tr>
<tr>
<td>DEPT spectrum for 33</td>
<td>61</td>
</tr>
<tr>
<td>COSY spectrum for 33</td>
<td>62</td>
</tr>
<tr>
<td>HETCOR spectrum for 33</td>
<td>63</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 6</td>
<td>64</td>
</tr>
<tr>
<td>DEPT spectrum for 34</td>
<td>65</td>
</tr>
<tr>
<td>COSY spectrum for 34</td>
<td>66</td>
</tr>
<tr>
<td>HETCOR spectrum for 34</td>
<td>67</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 35</td>
<td>68</td>
</tr>
<tr>
<td>DEPT spectrum for 35</td>
<td>69</td>
</tr>
<tr>
<td>COSY spectrum for 35</td>
<td>70</td>
</tr>
<tr>
<td>HETCOR spectrum for 35</td>
<td>71</td>
</tr>
<tr>
<td>1H- and 13C-NMR spectra for 36</td>
<td>72</td>
</tr>
<tr>
<td>DEPT spectrum for 36</td>
<td>73</td>
</tr>
<tr>
<td>COSY spectrum for 36</td>
<td>74</td>
</tr>
</tbody>
</table>
Experimental Section

General: Melting points are uncorrected. Infrared spectra were obtained from solution in 0.1 mm cells or KBr pellets on a regular instrument. The 1H and 13C NMR spectra were recorded on 300 (75) MHz spectrometers. Apparent splitting is given in all cases. Column chromatography was performed on silica gel (60-mesh, Merck), TLC was carried out on Merck 0.2 mm silica gel 60 F$_{254}$ analytical aluminum plates.
1H-NMR in CDCl$_3$

\[\text{Diagram of } \text{H-NMR spectrum} \]

13C-NMR in CDCl$_3$

\[\text{Diagram of } \text{C-NMR spectrum} \]
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
DEPT

CH₃ and CH up
CH₂ down

CH only

all protonated carbons

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
1H-NMR in CDCl$_3$

![NMR spectrum for 18]

13C-NMR in CDCl$_3$

![NMR spectrum for 18]
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
DEPT

CH₃ and CH up
CH₂ down

CH only

all protonated carbons

APT

170.16
169.96
70.94
69.06
67.36
31.79
21.01
20.85

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
COSY
HETCOR
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
DEPT

CH$_3$ and CH up
CH$_2$ down

CH only

all protonated carbons
HETCOR
DEPT

CH$_3$ and CH up
CH$_2$ down

CH only

all protonated carbons

APT

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HETCOR

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H-NMR in CDCl₃

![H-NMR spectrum](image)

13C-NMR in CDCl₃

![C-NMR spectrum](image)
DEPT

CH$_3$ and CH up
CH$_2$ down

CH only

all protonated carbons
COSY

COSY (expanded)
HETCOR
1H-NMR in CDCl$_3$

![H-NMR spectrum](image)

13C-NMR in CDCl$_3$

![C-NMR spectrum](image)
DEPT

\[
\begin{array}{c}
\text{AcO} \\
\text{OAc} \\
\text{OAc} \\
\text{AcO} \\
\end{array}
\]

CH₂ and CH up
CH₂ down

CH only

all protonated carbons

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HMOC

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H-NMR in D$_2$O

13C-NMR in D$_2$O
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
\(^1\text{H-NMR in CDCl}_3\)

\[\text{O}_x \text{OAc} \]
\[\text{MeO} \text{OAc} \]

28

\[5.50 \]
\[4.86 \]
\[3.7 \]
\[3.6 \]
\[3.5 \]
\[3.4 \]
\[3.3 \]
\[3.2 \]

\[1.09 \]
\[1.02 \]
\[0.99 \]
\[2.20 \]
\[6.78 \]
\[2.89 \]

\[^{13}\text{C-NMR in CDCl}_3\]

\[\text{O}_x \text{OAc} \]
\[\text{MeO} \text{OAc} \]

28

\[170.5 \]
\[169.5 \]

\[55.0 \]
\[54.5 \]
\[54.0 \]
\[53.5 \]

\[27.89 \]

\[21.5 \]
\[21.0 \]
\[20.5 \]
DEPT

CH\textsubscript{3} and CH up
CH\textsubscript{2} down

CH only

all protonated carbons
HETCOR

![HETCOR diagram](image_url)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry

This journal is © The Royal Society of Chemistry 2013
$^1\text{H-NMR in CDCl}_3$

$^{13}\text{C-NMR in CDCl}_3$
DEPT

CH₂ and CH up
CH₂ down

CH only

all protonated carbons

APT

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HETCOR

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H-NMR in CDCl₃

![1H-NMR spectrum](image)

13C-NMR in CDCl₃

![13C-NMR spectrum](image)
DEPT

CH₂ and CH up
CH₂ down

CH only

all protonated carbons

APT

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
COSY

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
13C-NMR in CDCl$_3$
COSY in CDCl₃
HETCOR in CDCl$_3$
1H-NMR in D$_2$O

13C-NMR in D$_2$O
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
DEPT

CH₃ and CH up
CH₂ down

CH only

all protonated carbons
HETCOR
1H-NMR in D$_2$O

13C-NMR in D$_2$O
1H-NMR in CDCl$_3$

13C-NMR in CDCl$_3$
1H-NMR in CDCl₃

13C-NMR in CDCl₃
COSY

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HMBC (expanded 1)
HMBC (expanded 2)

[Chemical structure image]

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HMBC (expanded 3)

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
NOESY

AcO

Br

Br

OAc

OAc

35
\(^1\text{H-NMR in D}_2\text{O} \)

\(^{13}\text{C-NMR in D}_2\text{O} \)
1H-NMR in CDCl$_3$

![H-NMR spectrum](image)

13C-NMR in CDCl$_3$

![C-NMR spectrum](image)
DEPT

CH\textsubscript{3} and CH up
CH\textsubscript{2} down

CH only

all protonated carbons
COSY

[Chemical structure image]

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HETCOR
\(^1\text{H-NMR in D}_2\text{O}\)

\[\text{HO} \quad \text{HO} \quad \text{OH} \quad \text{Br}^+ \quad 40\]

\(^{13}\text{C-NMR in D}_2\text{O}\)

\[\text{HO} \quad \text{OH} \quad \text{OH} \quad \text{Br}^+ \quad 40\]
1H-NMR in CDCl$_3$
1H-NMR in benzene-d$_6$

13C-NMR in benzene-d$_6$
DEPT in benzene-d6

CH₃ and CH up
CH₂ down

CH only

All protonated carbons

APT in benzene-d6

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
COSY in benzene-d6
HETCOR
1H-NMR in D$_2$O

13C-NMR in D$_2$O
COSY in D$_2$O
COSY

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
HMOC

[Chemical structure diagram]

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
^{1}H-NMR in D$_2$O

13C-NMR in D$_2$O
COSY in D$_2$O

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H-NMR in CD$_3$OD

13C-NMR in CD$_3$OD
^{1}H-NMR in CD$_3$OD

13C-NMR in CD$_3$OD
1H-NMR in CD$_3$OD

13C-NMR in CD$_3$OD

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
Epoxide 20

Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-31G**

<table>
<thead>
<tr>
<th>Atom</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>0.568650</td>
<td>-0.759648</td>
<td>-0.323785</td>
</tr>
<tr>
<td>C</td>
<td>-1.498533</td>
<td>0.676555</td>
<td>0.325864</td>
</tr>
<tr>
<td>C</td>
<td>-2.398029</td>
<td>-0.568647</td>
<td>0.374164</td>
</tr>
<tr>
<td>C</td>
<td>-0.048070</td>
<td>0.285546</td>
<td>0.630276</td>
</tr>
<tr>
<td>H</td>
<td>-1.624627</td>
<td>1.119745</td>
<td>-0.660938</td>
</tr>
<tr>
<td>H</td>
<td>-2.366617</td>
<td>-1.017302</td>
<td>1.383582</td>
</tr>
<tr>
<td>H</td>
<td>-0.046439</td>
<td>-0.199368</td>
<td>1.611993</td>
</tr>
<tr>
<td>H</td>
<td>1.080749</td>
<td>-0.268779</td>
<td>-1.156377</td>
</tr>
<tr>
<td>H</td>
<td>-1.815725</td>
<td>1.407449</td>
<td>1.075890</td>
</tr>
<tr>
<td>O</td>
<td>0.857769</td>
<td>1.387620</td>
<td>0.844893</td>
</tr>
<tr>
<td>O</td>
<td>1.478048</td>
<td>-1.580425</td>
<td>0.423682</td>
</tr>
<tr>
<td>O</td>
<td>-3.741794</td>
<td>-0.277462</td>
<td>0.026828</td>
</tr>
<tr>
<td>C</td>
<td>-4.500996</td>
<td>0.320767</td>
<td>1.062906</td>
</tr>
<tr>
<td>H</td>
<td>-4.496322</td>
<td>-0.296252</td>
<td>1.974207</td>
</tr>
<tr>
<td>H</td>
<td>-5.525974</td>
<td>0.401505</td>
<td>0.695399</td>
</tr>
<tr>
<td>H</td>
<td>-4.143183</td>
<td>1.327006</td>
<td>1.322716</td>
</tr>
<tr>
<td>C</td>
<td>-0.463977</td>
<td>-1.713591</td>
<td>-0.909332</td>
</tr>
<tr>
<td>H</td>
<td>-0.049376</td>
<td>-2.679162</td>
<td>-1.199475</td>
</tr>
<tr>
<td>C</td>
<td>-1.898549</td>
<td>-1.610838</td>
<td>-0.601569</td>
</tr>
<tr>
<td>H</td>
<td>-2.526744</td>
<td>-2.496065</td>
<td>-0.694129</td>
</tr>
<tr>
<td>O</td>
<td>-1.369278</td>
<td>-1.124818</td>
<td>-1.849350</td>
</tr>
<tr>
<td>C</td>
<td>2.847450</td>
<td>-1.455373</td>
<td>0.416637</td>
</tr>
<tr>
<td>C</td>
<td>1.219025</td>
<td>2.344408</td>
<td>-0.064201</td>
</tr>
<tr>
<td>O</td>
<td>2.193499</td>
<td>3.009752</td>
<td>0.193531</td>
</tr>
<tr>
<td>O</td>
<td>3.469854</td>
<td>-2.188587</td>
<td>1.140864</td>
</tr>
<tr>
<td>C</td>
<td>0.388216</td>
<td>2.581049</td>
<td>-1.310042</td>
</tr>
<tr>
<td>H</td>
<td>0.132301</td>
<td>1.666484</td>
<td>-1.848795</td>
</tr>
<tr>
<td>H</td>
<td>0.959135</td>
<td>3.243142</td>
<td>-1.960247</td>
</tr>
<tr>
<td>H</td>
<td>-0.547795</td>
<td>3.078962</td>
<td>-1.039377</td>
</tr>
<tr>
<td>C</td>
<td>3.491207</td>
<td>-0.427021</td>
<td>-0.487896</td>
</tr>
<tr>
<td>H</td>
<td>3.152306</td>
<td>-0.511917</td>
<td>-1.524830</td>
</tr>
<tr>
<td>H</td>
<td>4.566442</td>
<td>-0.597110</td>
<td>-0.452550</td>
</tr>
<tr>
<td>H</td>
<td>3.284012</td>
<td>0.588313</td>
<td>-0.137562</td>
</tr>
</tbody>
</table>
Epoxide 21

Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-31G**

C 0.344420 -0.649491 -0.328328
C -1.677402 0.823007 -0.383896
C -2.599869 -0.193924 0.314113
C -0.225640 0.707706 0.082196
H -1.722774 0.638934 -1.463930
H -2.841713 0.160825 1.330910
H -0.170085 0.800535 1.168806
H -0.419415 -0.705056 -1.418758
H -2.019196 1.847641 -0.212290
O 0.524516 1.743751 -0.568026
O 1.679544 -0.736442 0.224471
O -3.798346 -0.411586 -0.413885
C -4.718022 0.664686 -0.365469
H -4.957803 0.942823 0.672287
H -5.629757 0.322849 -0.859789
H -4.349639 1.557236 -0.889951
C -0.517520 -1.786098 0.171148
H -0.177915 -2.781834 -0.108967
C -1.944102 -1.561137 0.465051
H -2.640252 -2.396142 0.387392
O -0.984198 -1.661866 1.526608
C 2.548074 -1.570874 -0.412371
C 1.508725 2.463961 0.051985
O 2.174083 3.207764 -0.624989
O 2.232759 -2.268441 -1.349422
C 3.918513 -1.493202 0.210880
H 4.312333 -0.476786 0.118917
H 4.583014 -2.195048 -0.291254
H 3.860463 -1.729424 1.277308
C 1.687360 2.320344 1.550415
H 0.770219 2.579673 2.089267
H 2.480734 3.003568 1.850592
H 1.960696 1.297444 1.820326
Epoxide 28

Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-31G**
Job type: Geometry optimization.
Method: RB3LYP
Basis set: 6-31G**

C 0.520473 -1.136445 0.600540
C -1.426439 0.538988 0.370534
C -2.469140 -0.589530 0.292326
C -0.241370 0.052951 1.214610
H -1.139790 0.790193 -0.650047
H -2.844134 -0.817179 1.307176
H -0.667693 0.333822 2.148759
H -1.860500 1.424814 0.843926
O 0.680980 1.038554 1.702611
O -3.563268 -0.272078 -0.552260
C -4.508466 0.617902 0.013314
H -4.900128 0.238831 0.969968
H -5.332354 0.696218 -0.699023
H -4.095923 1.622711 0.180827
C -0.401497 2.123153 -0.100920
H -0.052697 3.154419 -0.105925
C -1.044645 1.852882 -0.262455
H -2.597888 2.694342 -0.367633
O -0.938127 1.679234 -1.354844
C 2.611419 -1.377527 -0.521782
C 1.453512 1.894815 0.953687
O 2.507901 2.244978 1.423660
O 2.754955 -2.476456 -0.037659
C 0.911124 2.453296 -0.344680
H 0.814484 1.672054 -1.100153
H 1.612507 3.210873 -0.693701
H -0.069898 2.909754 -0.191194
C 3.604746 -0.643379 -1.383836
H 3.151738 -0.386545 -2.345705
H 4.482374 -1.269224 -1.540030
H 3.891417 0.290667 -0.891056
H 1.065069 -1.658903 1.391069
O 1.492967 -0.620358 -0.331366