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Materials and methods 
Chemicals and solvents were purchased from commercial sources and used without further purification. 
Synthesis of fluorescent chalcone 3 
Chalcone derivative 3 was obtained from a classic aldol condensation (Claisen-Schmidt condensation) of aromatic 
aldehydes and aromatic ketones in excellent yield (90%) after purification. Ketone 1 (1 mmol) was added to a 
solution of NaOH (10% w/v or KOH) and ethanol (3 mL). The mixture was stirred for 20 min under ice bath cooling. 
After, aldehyde 2 (1 mmol) was added and the resulting mixture was stirred for additional 12 hours at room 
temperature. The reaction mixture was acidified with HCl 10%. The precipitate was collected, washed with cold 
water, dried and purified by column chromatography (20% ethyl acetate/hexane). See Table 3 in the main text to 
access spectroscopic data for 3. Anal. Calcd for C23H20O3: C, 80.21; H, 5.85; N, 0.00. Found: C, 80.39; H, 5.97; N, 
0.00. m.p. 84-85 °C.  
NMR measurements 
All NMR measurements were carried out on a Bruker Avance III spectrometer (11.75 T) operating at 500 MHz for 
1H and on a Varian Mercury Plus spectrometer (7.05 T) operating at 300 MHz for 1H and at 75.46 MHz for 13C. 
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NMR samples were prepared by dissolving 40 mg of chalcone 3 in 600 L of DMSO-d6 containing TMS as internal 

reference. The longitudinal relaxation times (T1) of chalcone 3 protons and carbons were measured by the inversion 

recovery method, with a (180º--90º)n pulse sequence. For hydrogens, 16 recovery delays randomly ranged from 

0.001 to 20 s were used for the solutions with and without BSA. For carbons, 44 recovery delays randomly ranged 

from 0.001 to 25 s were used for the solutions with and without BSA. Typically, NMR data were collected with 128 

free induction decays (FIDs) and 64 K data points using a 6.7 s pulse width (90º pulse angle) and an acquisition 

time of 3.27 s, using the same receiver gain. Prior to Fourier transformation, all FIDs were zero-filled and exponential 

weighing factor corresponding to a line broadening of 0.3 Hz were applied.  

Theoretical calculations 
Theoretical treatment of chalcone 3 was performed using the density functional theory (DFT) approach of the 
Gaussian 09 series of programs.(1) Geometry optimization of the ground (S0) and first excited (S1) states (in gas 
phase and water) were conducted with 6-311+g(2d,p)  Pople’s split-valence basis set and Becke’s 3-parameter hybrid 
exchange-correlation functional  (B3LYP).(2, 3) Harmonic frequency calculations were performed verify whether we 
have located a genuine minimum. The optimized geometries of S0 and S1 were used for the single point TD-DFT 
calculation using the Perdew-Burke-Erzenrhof exchange-correlation functional (PBE1PBE)(4) in combination with 
6-311+G(2d,p). Absorption spectra in close agreement with experiments have been obtained using the TD-
PBE1PBE/6-311+G(2d,p) level of calculation.(5, 6) To include the solvent effects in our quantum mechanics 
calculations we have employed the self-consistent reaction field (SCRF) approach with the polarizable continuum 
model (PCM)(7-9) were the solute molecule is enclosed in a cavity embedded in a dielectric medium.  
 The Fukui functions (10) were employed to determine the reactivity sites in chalcone 3. The Fukui functions were 
employed to determine the reactivity sites in the molecule. This function, denoted as , is defined as the derivative 
of the electron density, , with respect to the total number of electrons of the system, , under a constant external 
potential, : 
 

 
(1) 
 

Due to the discontinuity of the first derivative in Eq.(1) with respect to the number of electrons , the following three 
functions can be defined in a finite difference approximation: 

 (2a) 
 

 (2b) 
 

1
2

 
(2c) 
 

where ,  and  are the electronic densities of the system with 1, , and 1 electrons, 
respectively, all with the ground state geometry of the  electron system. Equations (2a), (2b), and (2c) are evaluated 
for nucleophilic, electrophilic and free radical attacks respectively.  The finite difference formulation is frequently 
used in combination with the condensed Fukui function. The condensed Fukui functions can also be employed to 
determine the reactivity of each atom in the molecule. The corresponding condensed functions are given by 

1 for nucleophilic attack) (3a) 
 

1 for electrophilic attack) (3b) 
 

1 1 /2 for radical attack) (3c) 
 

where 1 ,  and 1  are the partial charges at atom  on the anion, neutral, and cations species, 
respectively. We calculated partial charges of each atom using CHELPG (Charges from Electrostatic Potentials using 
a Grid based) method.(11) 
 Atomic coordinates for BSA were taken from the crystallographic structure solved at 2.70 Å (PDB ID 3V03). 
Molecular docking simulations were performed with the program Autodock4(12-14) coupled to the AutoDock Tools.(14, 

15) The partial charges on the protein and chalcone 3 atoms were taken from the AMBER all-atom force field.(16) The 
grid maps were calculated using AutoGrid.(17) Two different grid maps with 126 x 126 x 126 points and a grid-point 
spacing of 0.300 Å and 0.175 Å, respectively, were calculated. Each pair of grids was successively cantered on 
residues Trp134, Trp213 and Tyr410. During the docking simulations, dihedral angles were treated as flexible for 
chalcone 3 as well as for residues Glu17, Lys131, Lys 132, Arg198 and Arg217. The Lamarckian genetic algorithm 
was used with the following parameters:(12-14) an initial population of 100 random individuals, a maximum 
number of 1.5 x 106 energy evaluations, a maximum number of 27000 generations with mutation and crossover rates 
of 0.02 and 0.08, respectively. An optional elitism parameter equal to 1 was applied. It determines the number of top 
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individuals that will survive into the next generation. A maximum of 300 iterations per local search was allowed. The 
probability of performing a local search on an individual was 0.06 where the maximum number of consecutive 
successes or failures before doubling or halving the search step was 4. After the conformational search, the docked 
conformations were sorted in order of increasing energy. The coordinates of the lowest energy conformation were 
clustered based a root-mean-squared-deviation of 2.0 Å. A more detailed description of the methodology employed 
here can be found elsewhere.(18, 19) 
 Molecular dynamics simulations(20, 21) were carried out using the GROMOS force field force parameter set 
53A6.(22, 23) The -carbon atoms were position restrained with a force constant of 1000 kJ·mol-1·nm-2 throughout the 
simulation. The system was placed in a cubic box of 8.0 x 8.0 x 8.0 nm3, treated for periodic boundary conditions and 
solvated with explicit SPC model water molecules.(24) The system was neutralized with 16 Na+ counter ions. 
Simulations were carried out in the NPT ensemble and a time step of 2 fs was used to integrate the equations of 
motion based on the Leap-Frog algorithm.(25) The temperature of the solute and solvent were separately coupled to 
the velocity rescale thermostat at 298.15 K with a relaxation time of 0.1 ps. The pressure was maintained as 1 atm by 
isotropic coordinate scaling with a relaxation time of 1 ps. Hydrogen bond lengths and angles were constrained by 
using the P-LINCS algorithm(26) and the geometry of the water molecules was constrained using the SETTLE 
algorithm.(27) A twin-range cutoff of 1.2 and 1.4 nm was used for vdW interactions. The pair-list for short-range non-
bonded interactions was recomputed every 5 fs simultaneously with the update of the intermediate-range non-bonded 
interactions. The mean effect of electrostatic interactions beyond the long-range cutoff distance was approximated by 
the inclusion of a reaction-field force(28) using a solvent dielectric constant  = 66. The systems were initially 
minimized through 20.000 iterations of the steepest descent algorithm. The system was simulated for 2.5 ns with 
configurations being recorded at every 5.0 ps. The software package GROMACS v.4.5.4 and implemented algorithms 
were used for simulation and analysis.(29) Protein structures were visualized with the software VMD 1.86.(30) 
Circular Dichroism  
Circular Dichroism (CD) measurements were carried out using Jasco J-815 spectropolarimeter (Jasco, Tokyo, Japan) 
equipped with a Peltier type temperature controller and thermostatized cuvette cell. Five consecutive measurements 
were accumulated and the averaged far and near UV spectra were recorded. The ellipticities were corrected for the 
baseline contribution of the buffer from each recorded spectrum and converted into molar ellipticity ([]) based on 
molecular mass per residue of 112 Da. Near-UV CD experiments were performed in order to estimate binding 
constant for BSA-chalcone 3 complex formation. Spectra were recorded from 250 to 475 nm upon varying amounts 
of chalcone (0 to 9.0 x 10-5 M) added to 3.0 x 10-5 M of BSA at 25 °C, in thermostatized quartz cuvettes of 1 cm 
pathway. The baseline of buffer and BSA spectra in the absence of 3 were subtracted from all spectra obtained from 
the titration experiment in order to collect the differential molar ellipticities as consequence of complex formation. 
The equilibrium of binding reaction was monitored from CD signal at 382 nm. Binding constant of the BSA-chalcone 
3 complex, Kd, was calculated from fitted curve of  []382 nm as a function of chalcone concentration, according to 
Adair equation considering two binding sites, using the GRAFIT program version 3 (Erithacus Software, Horley, 
Surrey, United Kingdom). Far-UV spectra of BSA (3.0 x 10-7 M) and BSA in the presence of 3 (1.5 x 10-7 M) were 
recorded using 0.2 cm pathlength quartz cuvette in 5 mM tris-HCl buffer (pH 7.5). The BSA unfolding pathway 
induced by temperature increase was performed raising the temperature at 0.5 °C/min, from 25 °C to 95 °C. The BSA 
structure in the presence and absence of chalcone was monitored by changes in [] at 222 nm. The thermal denaturing 
curves were expressed considering the unfolded protein fraction (ƒU) and the equilibrium constants (Keq) were 
estimated according to equations 1 and 2. The thermodynamic parameters enthalpy (∆Hm), entropy (∆Sm) and the 
Gibbs free energy (∆G25) were calculated from van’t Hoff approximation using equation 3 and equation 4.  
 

ƒU = (yN – y) / (yN – yU)    (1) 

Keq = [U] / [N] = ƒU / (1 – ƒU)   (2) 

R ln Keq = – ∆H (1/T) + ∆S    (3) 

∆G = ∆H – T ∆S     (4) 

 
 In the equations, yN and yU represent the amount of y protein in native and unfolded states, respectively. [U] and 
[N] denote the protein concentration in unfolded and native states, respectively; R, the universal gas constant (1.987 
cal·K-1·mol-1) and T, the temperature in Kelvin (K). The melting temperature (Tm), where the unfolding occurs, was 
calculated from the nonlinear fitting of unfolding curves. 
Mass spectrometry  
ESI-MS and ESI-MS/MS measurements were performed in the positive ion mode (m/z 50–2000 range) on a Waters 
Synapt HDMS (high definition mass spectrometer, Manchester, UK) instrument. This instrument has a hybrid 
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quadrupole/ion mobility/orthogonal acceleration time-of-flight (oa-TOF) geometry and was used in the TOF mode, 
with the mobility cell switched off and working only as an ion guide. All samples were dissolved in acetonitrile or 
methanol to form 50 M solutions and were infused directly into the ESI source in a flow rate of 5 L/min. ESI 
source conditions were as follows: capillary voltage 3.0 kV, sample cone 30 V, extraction cone 3 V. Native 
BSA/Chalcone ESI experimentswere performed by incubating BSA (100 M) and chalcone structure (1 mM) in 50 
mM ammonium acetate bufer (pH 7.0) for 4 hours at room temperature. The resulting sample was directly infused 
into mass spectrometer at 10 l/min. Mass spectrometer parameters like cone voltage, source temperature, inner 
source pressure and cappilary voltave and distance to cone were scaned to verify the presence of BSA/Chalcone non-
covalent adduct. 
 

 

Figure S1. (A) UV-VIS of compound 3. (B) Fluorescence emission at 494 nm. (C) Fluorescence 

emission at 742 nm. All experiments in methanol. Dye concentration = 10 M. 

 

Figure S2. (A) UV-VIS of compound 3. (B) Fluorescence emission at 408, 431 and 458 nm. (C) 

Fluorescence emission at 725 nm. All experiments in acetone. Dye concentration = 10 M. 

 

Figure S3. (A) UV-VIS of compound 3. (B) Fluorescence emission at 416 and 437 nm. (C) Fluorescence 

emission at 718 nm. All experiments in 1,4-dioxane. Dye concentration = 10 M. 
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Figure S4. (A) UV-VIS of compound 3. (B) Fluorescence emission at 403 nm. (C) Fluorescence 

emission at 718 nm. All experiments in ethyl acetate. Dye concentration = 10 M. 

 

 

Figure S5. (A) UV-VIS of compound 3. (B) Fluorescence emission at 402 nm. (C) Fluorescence 

emission at 716 nm. All experiments in toluene. Dye concentration = 10 M. 

 

Figure S6. (A) UV-VIS of compound 3. (B) Fluorescence emission at 385nm. (C) Fluorescence emission 

at 692 nm. All experiments in hexane. Dye concentration = 10 M. 
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Figure S7. (A) UV-VIS of compound 3. (B) Fluorescence emission at 409, 433 and 458 nm. (C) 

Fluorescence emission at 727 nm. All experiments in dichloromethane. Dye concentration = 10 M.  

 

 

Figure S8. ESI(+)-QTOF-MS/MS (collision induced dissociation) of protonated chalcone derivative 3. 
Precursor ion of m/z 345.15.  
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Figure S9. (A) 1H, (B) 13C APT and (C) 1H-13C HSQC (left) and HMBC (right) spectra. Dye 
concentration = 200 mM (DMSO-d6). 
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Figure S10. (A) 1H, (B) 13C APT and (C) 1H-13C HSQC (left) and HMBC (right) with BSA final 

concentration of 15 M (from D2O solution). Dye concentration = 200 mM (DMSO-d6).  
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Figure S11. 13C NMR spectra of (A) 200 mM solution of 3 in DMSO-d6 , (B) with 10 M and (C) with 

15 M of BSA.  

 

Table S1. 1H T1(s) of a 200 mM of chalcone 3 and 2.5 M, 10.0 M and 15.0 M of BSA (host), 
respectively. 

 

Position 
Guest 

(chalcone 3) 
 

3 + 
BSA (2.5 µM) 

3 + 
BSA (10 µM) 

3 + 
BSA (15 µM) 

1 - - - - 
2 1.31 1.39 * * 
3 - - - - 
4 - - - - 
5 1.05 1.12 1.34 1.24 
6 1.50 1.39 * * 
7 0.67 0.77 0.64 * 
8 0.64 0.75 0.77 * 
9 2.66 2.93 2.72 2.49 
10 0.92 1.16 1.24 1.07 
11 - - - - 
12 - - - - 

13 e 13’ 1.44 1.49 1.66 1.67 
14 e 14’ 1.23 1.61 1.64 1.55 

15 - - - - 
16 - - - - 

17 e 17’ 1.48 1.47 1.56 1.44 
18 e 18’ 1.71 1.77 1.96 1.66 

19 1.91 1.95 1.97 1.93 
* T1 values were not calculated due to signal superposition.  
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Table S2. Fukui function (f+ and f- values) for all carbon atoms of the fluorescent chalcone 3. Values in 
brackets were obtained considering the solvent effect (simulated in water). 

Atom State (ground or first excited) Fukui function values (f+) Fukui function values (f-) 

C1 S0 0.03 [0.03] 0.05 [0.05] 
C1 S1 0.05 [0.02] 0.05 [0.06] 
C2 S0 0.01 [0.01] -0.01 [0.01] 
C2 S1 0.01 [0.01] -0.01 [0.00] 
C3 S0 0.02 [0.02] 0.03 [0.02] 
C3 S1 0.03 [0.02] 0.03 [0.02] 
C4 S0 -0.02 [0.00] 0.13 [0.22] 
C4 S1 -0.03 [-0.01] 0.10 [0.23] 
C5 S0 0.02 [0.03] -0.04 [-0.06] 
C5 S1 0.03 [0.03] -0.03 [-0.07] 
C6 S0 0.04 [0.04] 0.10 [0.16] 
C6 S1 0.04 [0.06] 0.07 [0.15] 
C7 S0 -0.05 [-0.04] -0.05 [-0.05] 
C7 S1 -0.06 [-0.06] -0.05 [-0.03] 
C8 S0 -0.06 [-0.05] -0.02 [-0.03] 
C8 S1 -0.07 [-0.06] -0.02 [-0.02] 
C9 S0 0.11 [0.13] -0.05 [-0.08] 
C9 S1 0.14 [0.09] -0.04 [-0.06] 
C10 S0 -0.01 [0.03] 0.21 [0.27] 
C10 S1 0.00 [0.05] 0.20 [0.24] 
C11 S0 0.13 [0.15] -0.06 [-0.03] 
C11 S1 0.11 [0.12] -0.07 [0.01] 
C12 S0 -0.04 [-0.02] 0.02 [-0.02] 
C12 S1 -0.04 [-0.01] 0.03 [-0.05] 
C13 S0 0.00 [0.01] 0.01 [0.03] 
C13 S1 -0.01 [0.00] 0.01 [0.03] 
C13’ S0 0.04 [0.05] -0.01 [0.01] 
C13’ S1 0.02 [0.05] 0.00 [0.02] 
C14 S0 0.04 [0.04] 0.02 [0.00] 
C14 S1 0.03 [0.03] 0.01 [0.01] 
C14’ S0 0.01 [0.01] 0.02 [0.00] 
C14’ S1 0.01 [-0.02] 0.01 [0.03] 
C15 S0 0.06 [0.04] 0.04 [0.02] 
C15 S1 0.05 [0.08] 0.05 [-0.02] 
C16 S0 -0.02 [0.00] -0.01 [-0.01] 
C16 S1 -0.03 [-0.04] -0.01 [0.02] 
C17 S0 0.01 [0.00] 0.02 [0.01] 
C17 S1 0.01 [0.02] 0.02 [-0.01] 
C17’ S0 0.00 [0.00] 0.020 [0.01] 
C17’ S1 0.00 [0.00] 0.02 [0.01] 
C18 S0 0.01 [0.01] 0.01 [0.00] 
C18 S1 0.01 [0.02] 0.01 [-0.01] 
C18’ S0 0.02 [0.00] 0.00 [0.00] 
C18’ S1 0.01 [0.01] 0.00 [0.01] 
C19 S0 0.03 [0.02] 0.07 [0.01] 
C19 S1 0.03 [0.02] 0.07 [0.01] 
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