# Asymmetric Michael Reactions Catalyzed by a Highly Efficient and Recyclable Quaternary

# Ammonium Ionic Liquid-Supported Organocatalyst in Aqueous Media

Subrata Ghosh, Yupu Qiao, Bukuo Ni\* and Allan D. Headley\*

Department of Chemistry, Texas A&M University-Commerce

Commerce, TX 75429-3001, USA

E-Mail: allan.headley@tamuc.edu; bukuo.ni@tamuc.edu

# Supporting Information

| General Information                   | S2    |
|---------------------------------------|-------|
| Synthesis of catalyst <b>1</b>        | S2-S3 |
| The data of Michael addition reaction | S4-S7 |
| References                            | S7    |
| HPLC spectra of <b>3</b>              |       |

**General information**: Commercial reagents were used as received, unless otherwise stated. Merck 60 silica gel was used for chromatography, and Whatman silica gel plates with fluorescence UV254 were used for thin-layer chromatography (TLC) analysis. <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on the Bruker Avance 400. The high resolution mass spectra were analyzed by using ESI-TOF high-acc from the Scripps Research Institute. All the compounds synthesized (shown in Table 3) in the manuscript are known compounds.<sup>1</sup> Their relative and absolute configurations of the products were determined by comparison with the known <sup>1</sup>H and <sup>13</sup>C NMR, chiral HPLC analysis, and optical rotation values.

#### Synthesis of the catalyst1:



Benzyl bromide (521mg, 3 mmol) was added dropwise to the solution of diarylprolinol silyl ether (670 mg, 1.5 mmol) in CH<sub>3</sub>CN (10 mL). After addition, the reaction mixture was continued to stirring overnight. The reaction mixture was concentrated and the crude product was washed with diethyl ether (5x10 mL) to give the product **1** as a solid (1.13g, 95% yield).  $[\alpha]_D^{25} = -4.8$  (c = 0.5, MeOH). <sup>1</sup>H NMR (400 MHz, MeOH)  $\delta = 7.72-6.97$  (m, 18H), 4.56-4.52 (dd, J = 18Hz, 10Hz, 8H), 3.88-3.57 (m, 2H), 2.88-2.76 (m, 12H), 2.42-2.26 (m, 3H), 2.00-1.92 (m, 2H), 1.74-1.72 (m, 1H), 1.32-1.17 (m, 1H), 0.66 (s, 1H), -0.01--0.27 (m, 9H). <sup>13</sup>C NMR (100 MHz, MeOH)  $\delta = 135.5$ , 135.4, 135.3, 135.2, 135.2, 134.3, 134.2, 132.8, 132.6, 132.3, 131.3, 131.2, 130.1, 130.0, 129.6, 128.9, 86.9, 84.8, 84.4, 70.3, 69.8, 64.2, 56.8, 48.3, 31.1, 29.0, 26.5, 25.8, 3.2, 3.2,

1.8. HRMS (ESI-TOF high-acc) m/z calcd for  $C_{40}H_{55}N_3OSi_2^+$  (M-2Br): 621.4103, found: 621.4102.

## The general procedure for the Michael addition reactions of aldehydes to nitroolefines

In a 5 mL flask was added the catalyst **1** (0.02 mmol), acid (0.12mmol), nitroolefin (0.4 mmol) water (0.5 mL) and aldehyde (0.8 mmol). The reaction mixture was stirred for the listed hours and extracted with  $Et_2O$ :Hexane = 1:8 (v/v). The crude product was purified by flash column chromatography (eluent: hexane/ethyl acetate) to give the Michael Addition products shown in Table 2.

## Experimental procedure for catalyst 1 recycling on water

*n*-Pentanal (0.0689g, 0.8 mmol) was added to a solution of catalyst **1** (15.6 mg, 0.02 mmol), *trans*- $\beta$ -nitroolefins (59.7mg, 0.4 mmol) and IL-Benzoic acid (48.5 mg, 0.12mmol) on water (0.5 mL) at room temperature for 18 h. The reaction mixture was extracted with a solvent mixture of ethyl ether-hexane (1:8, 2 x 3 mL). The organic phase was combined and concentrated in vacuum to give the crude product, which was purified by flash column chromatography (silica gel, hexane/AcOEt = 5/1) to afford the Michael adduct **2a** (99%) with enantioselectivity (99% *ee*) and diastereoselectivity (*syn/anti* = 96/4). The recovered aqueous phase was used directly for the next cycle by addition of new reactants *n*-Pentanal (0.0689g, 0.8 mmol) and *trans*- $\beta$ -nitroolefins (59.7mg, 0.4 mmol). The reaction mixture was stirred for the listed time in Table 3.

## (R)-2-((S)-2-nitro-1-phenylethyl) pentanal



flow rate 1.0 mL/min, syn/anti= 96:4, 99% ee, Syn:  $t_R$ = 11.0 min (minor),  $t_R$ =14.6 min (major).

## (2R,3S)-2-isopropyl-4-nitro-3-phenylbutanal



Yield: 68.7mg, 73%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  = 9.93 (d, J = 2.0 Hz, 1H), 7.37-7.17 (m, 5H), 4.69-4.55 (m, 2H), 3.90 (dt, J = 10.4 and 4.4 Hz, 1H), 2.80-2.74 (m, 1H), 1.76-1.68 (m, 1H), 1.10 (d, J = 7.2 Hz, 3H), 0.89(d, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 204.3, 137.1, 129.1, 128.4, 128.1, 127.9, 79.0, 58.8, 41.9, 27.9, 21.6, 17.0. HPLC: Chiralcel IC column,

80:20 hexane: isopropanol, flow rate 0.8 mL/min, syn/anti= 98:2, 99% ee, Syn:  $t_R$ = 17.3 min (minor),  $t_R$ =18.2 min (major).

# (R)-2-((S)-2-nitro-1-phenylethyl)hexanal



28.5, 27.0, 22.4, 13.6. HPLC: Chiralcel OD-H column, 80:20 hexane:isopropanol, flow rate 1.0 mL/min, syn/anti= 98:2, 99% ee, Syn:  $t_R$ = 10.2 min (minor),  $t_R$ =12.8 min (major).

# (R)-2-((S)-2-nitro-1-phenylethyl)heptanal



2.66 (m, 1H), 1.52-1.04 (m, 8H), 0.80 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl3)  $\delta = 203.2, 136.8, 128.9, 128.0, 127.9, 78.4, 53.8, 43.0, 31.4, 27.2, 25.9, 22.1, 13.7. HPLC: Chiralcel OD-H column, 85:15 hexane:isopropanol, flow rate 1.0 mL/min, syn/anti= 98:2, 99% ee, Syn: <math>t_R = 11.4 \text{ min (minor)}, t_R = 14.9 \text{ min (major)}.$ 

(R)-2-((S)-2-nitro-1-phenylethyl)nonanal

Yield: 109.6mg, 94%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 
$$\delta$$
 9.71 (d,  $J$  = 2.8 Hz, 1H),  
7.37-7.14 (m, 5H), 4.74-4.55 (m, 2H), 3.78 (dt,  $J$  = 9.6 and 5.2 Hz, 1H), 2.74-  
2.66 (m, 1H), 1.64-1.04 (m, 12H), 0.84 (t,  $J$  = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  = 203.2, 136.7, 129.0, 128.0, 127.9, 78.4, 53.8, 43.0, 31.5,

29.2, 28.7, 27.2, 26.2, 22.4, 14.0. HPLC: Chiralcel OD-H column, 90:10 hexane:isopropanol, flow rate 1.0 mL/min, syn/anti= 98:2, 99% ee, Syn:  $t_R$ = 12.9 min (minor),  $t_R$ =17.7 min (major).

## (R)-2-((S)-1-(4-methoxyphenyl)-2-nitroethyl)pentanal

 $\begin{array}{c} \mathsf{OMe} & \mathsf{Yield: 92.3mg, 87\%. ^{1}H \ NMR \ (400 \ MHz, CDCl_3) \ \delta \ 9.70 \ (d, J = 2.8 \ Hz, 1H),} \\ \mathsf{T}_{.08} \ (d, J = 8.8 \ Hz, 2H), \ 6.87 \ (d, J = 8.8 \ Hz, 2H), \ 4.69-4.56 \ (m, 2H), \ 3.79 \ (s, 3H), \ 3.75-2.62 \ (m, 1H), \ 2.68-2.62 \ (m, 1H), \ 1.53-1.14 \ (m, 4H), \ 0.81 \ (t, J = 7.2 \ Hz, 3H); \ ^{13}C \ NMR \ (100 \ MHz, CDCl_3) \ \delta = 203.4, \ 159.1, \ 129.2, \ 129.0, \ 128.5, \ 114.4, \ 78.6, \ 55.1, \ 53.9, \ 42.4, \ 29.3, \ 19.7, \ 13.9. \ HPLC: \ Chiralcel \ IC \ column, \ 80:20 \ hexane: isopropanol, flow rate \ 0.8 \ mL/min, \ syn/anti= 94:6, \ 99\% \ ee, \ Syn: \ t_{R}= 24.2 \ min \ (minor), \ t_{R}=27.6 \ min \ (major). \end{array}$ 

## (R)-2-((S)-1-(3-methoxyphenyl)-2-nitroethyl)pentanal



<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ= 203.0, 159.9, 138.4, 130.1, 120.1, 114.2, 112.9, 78.2, 55.2, 53.7, 43.1, 29.4, 19.7, 13.9. HPLC: Chiralcel OD-H column, 90:10 hexane:isopropanol, flow rate 1.0 mL/min, syn/anti= 95:5, 99% ee, Syn:  $t_R$ = 21.4 min (minor),  $t_R$ =48.0 min (major).

## (R)-2-((R)-1-(furan-2-yl)-2-nitroethyl)pentanal

Yield: 89.2mg, 99%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) 
$$\delta = 9.69$$
 (d,  $J = 2.0$ Hz,  
H, 7.36 (d,  $J = 2.4$  Hz, 1H), 6.30 (d,  $J = 3.6$  and 2.4 Hz, 1H), 6.19 (d,  $J = 3.2$ Hz, 1H), 4.75-4.63 (m, 2H), 4.01 (dt,  $J = 8.8$  and 5.2, 1H), 2.82-2.76 (m, 1H), 1.58-1.16 (m, 4H), 0.87 (t,  $J = 7.2$  Hz, 3H); <sup>13</sup>C NMR (100 MHz, 100 MHz).

CDCl3)  $\delta$  = 202.3, 150.1, 142.5, 110.3, 108.6, 76.0, 52.0, 36.9, 28.9, 19.8, 13.9. HPLC: Chiralcel OD-H column, 90:10 hexane:isopropanol, flow rate 0.8 mL/min, syn/anti= 99:1, 99% ee, Syn:  $t_R$ = 14.1 min (major),  $t_R$ =30.3 min (minor).

## (R)-2-((S)-1-(4-bromophenyl)-2-nitroethyl)pentanal

Br Yield: 118.1mg, 94%. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta = 9.68$  (d, J = 2.4 Hz, 1H), 7.48 (d, J = 8.0 Hz, 2H), 7.07 (d, J = 8.0 Hz, 2H), 4.73-4.58 (m, 2H), 3.76 (dt, J = 9.6 and 4.8 Hz, 1H), 2.72-2.65 (m, 1H), 1.52-1.12 (m, 4H), 0.81 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta = 202.8$ , 135.9, 132.2, 129.6, 122.0, 78.0, 53.4, 42.4, 29.4, 19.6, 13.8. HPLC: Chiralcel IC column, 80:20 hexane:isopropanol, flow rate 0.8 mL/min, syn/anti= 92:8, 99% ee, Syn: t<sub>R</sub>= 19.1 min (minor), t<sub>R</sub>=19.6 min (major).

## (2R, 3R)-2-benzyl-3-(nitromethyl)heptanal

$$H \xrightarrow[Bn]{} NO_{2}$$
H,  $NO_{2}$ 

6H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100MHz, CDCl3)  $\delta = 202.4$ , 138.2, 128.9, 128.8, 126.8, 76.9, 54.1, 37.0, 31.5, 29.0, 28.9, 22.4, 13.8. HPLC: Chiralcel IC column, 90:10 hexane:isopropanol, flow rate 1.0 mL/min, syn/anti= 96:4, 99% ee, Syn: t<sub>R</sub>= 11.5 min (minor), t<sub>R</sub>=16.2 min (major).

## **References:**

 (a) A. Alexakis, O. Andrey, Org. Lett., 2002, 4, 3611. (b) J. M. Betancort, C. F. Barbas III, Org. Lett., 2001, 3, 3737. (c) W. Wang, J. Wang, H. Li, Angew. Chem. Int. Ed., 2005, 44, 1369. (d) L. Zu, J. Wang, H. Li, W. Wang, Org. Lett., 2006, 8, 3077. (e) B. Ni, Q. Zhang, A. D. Headley, Green Chem., 2007, 9, 737. (f) Q. Zhang, B. Ni, A. D. Headley, etrahedron, 2008, 64, 5091. (g) J. Wu, B. Ni, A. D. Headley, Org. Lett., 2009, 11, 3354-3356. (h) S. Zhu, S. Yu, D. Ma, Angew. Chem. Int. Ed., 2008, 47, 545. (i) Z. Zheng, B. Perkins, B. Ni, J. Am. Chem. Soc., 2010, 132, 50.

# Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013





| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 11.832    | 415953  | 13827  | 29.343  | 36.922   |
| 2     | 13.883    | 287066  | 8112   | 20.251  | 21.662   |
| 3     | 15.857    | 422564  | 10570  | 29.809  | 28.223   |
| 4     | 23.458    | 291982  | 4941   | 20.597  | 13.193   |
| Total |           | 1417565 | 37450  | 100.000 | 100.000  |



| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 11.046    | 3448    | 196    | 0.130   | 0.261    |
| 2     | 12.847    | 53396   | 1863   | 2.012   | 2.480    |
| 3     | 14.637    | 2543949 | 71698  | 95.846  | 95.415   |
| 4     | 21.355    | 53406   | 1386   | 2.012   | 1.845    |
| Total |           | 2654199 | 75143  | 100.000 | 100.000  |



| 1     | 9.465  | 37139  | 3289  | 17.120  | 28.345  |
|-------|--------|--------|-------|---------|---------|
| 2     | 12.185 | 33406  | 2383  | 15.399  | 20.533  |
| 3     | 17.916 | 73195  | 3074  | 33.740  | 26.488  |
| 4     | 19.383 | 73199  | 2859  | 33.742  | 24.634  |
| Total |        | 216939 | 11605 | 100.000 | 100.000 |



| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 9.254     | 108400  | 6374   | 1.110   | 2.519    |
| 2     | 11.836    | 160657  | 8543   | 1.645   | 3.376    |
| 3     | 17.282    | 19361   | 873    | 0.198   | 0.345    |
| 4     | 18.152    | 9478535 | 237251 | 97.047  | 93.760   |
| Total |           | 9766953 | 253042 | 100.000 | 100.000  |



| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 13.367    | 573094  | 16647  | 37.013  | 44.406   |
| 2     | 14.259    | 193508  | 5427   | 12.498  | 14.476   |
| 3     | 17.718    | 608990  | 12819  | 39.331  | 34.195   |
| 4     | 26.075    | 172781  | 2595   | 11.159  | 6.923    |
| Total |           | 1548373 | 37489  | 100.000 | 100.000  |





| Peak# | Ret. Time | Area   | Height | Area %  | Height % |
|-------|-----------|--------|--------|---------|----------|
| 1     | 12.450    | 57988  | 2451   | 39.950  | 45.467   |
| 2     | 13.027    | 15523  | 645    | 10.694  | 11.967   |
| 3     | 15.353    | 58178  | 1958   | 40.081  | 36.318   |
| 4     | 21.821    | 13461  | 337    | 9.274   | 6.247    |
| Total |           | 145150 | 5391   | 100.000 | 100.000  |





| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 13.367    | 573094  | 16647  | 37.013  | 44.406   |
| 2     | 14.259    | 193508  | 5427   | 12.498  | 14.476   |
| 3     | 17.718    | 608990  | 12819  | 39.331  | 34.195   |
| 4     | 26.075    | 172781  | 2595   | 11.159  | 6.923    |
| Total |           | 1548373 | 37489  | 100.000 | 100.000  |



| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 12.933    | 7658    | 275    | 0.199   | 0.346    |
| 2     | 14.249    | 15725   | 584    | 0.409   | 0.735    |
| 3     | 17.696    | 3772050 | 77836  | 98.080  | 97.834   |
| 4     | 26.258    | 50455   | 864    | 1.312   | 1.086    |
| Total |           | 3845889 | 79560  | 100.000 | 100.000  |



| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 18.346    | 237332  | 10321  | 20.006  | 27.791   |
| 2     | 24.074    | 238039  | 7805   | 20.066  | 21.017   |
| 3     | 26.861    | 346063  | 9981   | 29.172  | 26.875   |
| 4     | 29.953    | 364852  | 9031   | 30.756  | 24.318   |
| Total |           | 1186286 | 37138  | 100.000 | 100.000  |

![](_page_13_Figure_3.jpeg)

| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 15.586    | 106474  | 3963   | 3.272   | 4.983    |
| 2     | 21.923    | 127994  | 3598   | 3.934   | 4.523    |
| 3     | 24.188    | 17763   | 585    | 0.546   | 0.735    |
| 4     | 27.552    | 3001509 | 71400  | 92.248  | 89.759   |
| Total |           | 3253740 | 79546  | 100.000 | 100.000  |

![](_page_14_Figure_1.jpeg)

| Peak# | Ret. Time | Area   | Height | Area %  | Height % |
|-------|-----------|--------|--------|---------|----------|
| 1     | 21.999    | 131718 | 3086   | 29.685  | 45.075   |
| 2     | 25.684    | 80163  | 1662   | 18.066  | 24.270   |
| 3     | 48.873    | 146378 | 1535   | 32.989  | 22.422   |
| 4     | 78.011    | 85458  | 564    | 19.260  | 8.232    |
| Total |           | 443717 | 6847   | 100.000 | 100.000  |

![](_page_14_Figure_3.jpeg)

| Peak# | Ret. Time | Area   | Height | Area %  | Height % |
|-------|-----------|--------|--------|---------|----------|
| 1     | 21.433    | 2318   | 65     | 0.525   | 1.424    |
| 2     | 25.035    | 7075   | 168    | 1.601   | 3.696    |
| 3     | 48.004    | 418829 | 4207   | 94.794  | 92.503   |
| 4     | 75.915    | 13609  | 108    | 3.080   | 2.377    |
| Total |           | 441832 | 4548   | 100.000 | 100.000  |

![](_page_15_Figure_1.jpeg)

| Peak# | Ret. Time | Area   | Height | Area %  | Height % |
|-------|-----------|--------|--------|---------|----------|
| 1     | 13.932    | 82195  | 3478   | 33.516  | 47.082   |
| 2     | 14.885    | 41720  | 1603   | 17.012  | 21.693   |
| 3     | 19.442    | 44926  | 1250   | 18.320  | 16.925   |
| 4     | 28.636    | 76396  | 1056   | 31.152  | 14.300   |
| Total |           | 245237 | 7388   | 100.000 | 100.000  |

![](_page_15_Figure_3.jpeg)

![](_page_16_Figure_1.jpeg)

| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 13.305    | 1545430 | 59580  | 24.246  | 30.679   |
| 2     | 19.040    | 1545332 | 45366  | 24.244  | 23.360   |
| 3     | 20.219    | 1619043 | 45912  | 25.401  | 23.641   |
| 4     | 21.133    | 1664185 | 43346  | 26.109  | 22.320   |
| Total |           | 6373990 | 194204 | 100.000 | 100.000  |

![](_page_16_Figure_3.jpeg)

| Peak# | Ret. Time | Area    | Height | Area %  | Height % |
|-------|-----------|---------|--------|---------|----------|
| 1     | 12.755    | 594958  | 28623  | 6.092   | 10.001   |
| 2     | 17.877    | 179237  | 7774   | 1.835   | 2.716    |
| 3     | 19.055    | 20139   | 1068   | 0.206   | 0.373    |
| 4     | 19.621    | 8972277 | 248741 | 91.867  | 86.910   |
| Total |           | 9766611 | 286205 | 100.000 | 100.000  |

![](_page_17_Figure_1.jpeg)

![](_page_17_Figure_2.jpeg)