Supporting Information for

Synthesis, Spectroscopic Properties of fluorescent 5-benzimidazolyl-2'-deoxyuridines from o-phenylenediamine derivatives as 5-fdU Probes

Pu Guo, Xiaowei Xu, Xiaoyu Qiu, Yimin Zhou, Shengyong Yan, Changcheng Wang, Chunjiang Lu, Wen Ma, Xiaocheng Weng, Xian-Zheng Zhang, Xiang Zhou*

College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, State Key Laboratory of Virology, Wuhan University, Hubei, Wuhan, 430072, P. R. of China, Corresponding Author Email Address: xzhou@whu.edu.cn
Table of Contents

Materials, methods and instruments.. S3
General procedure for the synthesis of dU^{b mz}.................................... S3-S4
\(^1\)H, \(^{13}\)C NMR and HRMS data of 3a-3j... S4-S9
\(^1\)H and \(^{13}\)C NMR spectra of 3a-3j... S10-S20
UV absorption spectra of 3a-3j.. S21-S29
Fluorescence emission spectra of 3a-3j.. S29-S37
Effect of pH on fluorescence intensity of 3a-3e..................................... S37-S39
Fluorescence emission spectra of 2j and 3j in H\(_2\)O............................... S40-S43
Fluorescence spectrum of changing fluorescence intensity during the pH titration of 3a-3e ... S40-S42
References.. S43
Materials, methods and instrumentation.

The following solvent, compounds and reagents were commercially available: 2’-deoxyuridine, 3, 4-dinitrobenzoic acid, o-phenylenediamine derivatives, Scandium trifluoromethanesulfonate, dithiothreitol (DTT) were bought from Sigma-Aldrich. 30% Hydrogen Peroxide, Dimethyl Formamide, ammonium acetate, glacial acetic acid, Paraformaldehyde were bought from SCRC (Shanghai, China).

1H and 13C NMR spectra were recorded on Varian Mercury 300 spectrometers, respectively. HRMS were recorded on a Bruker Daltonics, Inc. APEXIII 7.0 TESLA FTMS and Varian ProMALDI. API-ES were recorded on Agilent LC/MSD. Fluorescent emission spectra were collected on PerkinElmer LS 55. UV absorption spectra were collected on SHIMADZU UV-2550. Quartz cuvettes with 2mL volume were used for emission measurements. Unless otherwise specified, all spectra were taken at an ambient temperature.

General procedure for the synthesis of dU$^\text{bmxz}$

Scheme S1. Synthesis of dU$^\text{bmxz}$

Synthesis of 5-fdU:

(1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrapyrimidine-5-carbaldehyde)$^{[1]}$:

5.25g (23.0 mmol) 2’-deoxyuridine and 3.11g (103.5 mmol) paraformaldehyde were added into 250mL bottle with two necks and dissolved by 80mL 0.5mol/L triethylamine aqueous solution. The mixture was stirred at 60°C for 4 days. In the process, more paraformaldehyde (4.49g, 149.5mmol), triethylamine (1mL) and water
(10mL) was added into reaction mixture each day. After reaction finished, the mixture was concentrated in vacuo, the residue was recrystallized in MeOH to obtain 4.11g white solid, yield= 62%. 1H NMR(300 MHz, DMSO-d$_6$) δ(ppm): 11.34(s, 1H), 7.71 (s,1H), 6.17 (t, J=6.8 Hz, 1H), 5.26 (s,1H), 4.97 (s,2H), 4.20 (q, J=3.2 Hz, 1H), 4.10 (s, 2H), 3.75 (q, J=3.2 Hz, 1H), 3.57~3.47 (m, 2H), 2.09~1.99 (m, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.5, 150.2, 136.7, 114.1, 87.1, 83.7, 70.4, 61.3, 55.9, 35.2.

The 0.70g (2.7mmol) compound from last step was added into 25mL bottle with two necks and dissolved in 10mL MeOH following with 0.94g (10.9mmol) MnO$_2$. The mixture was stirred at 50°C for 6 h. After cooling to room temperature, the mixture was filtered through celatom to collect filtrate. The filtrate was concentrated in vacuo, the residue was recrystallized in MeOH to obtain 0.56g (2.19mmol) 5-fdU, yield=55%. 1H NMR(300 MHz, DMSO-d$_6$) δ(ppm): 11.76 (s, 1H), 9.73 (s, 1H), 8.71 (s, 1H), 6.07 (t, J=6.2 Hz, 1H), 5.28 (s, 1H), 5.13 (s, 1H), 4.21 (q, J=4 Hz,1H), 3.83 (q, J=3.2 Hz, 1H), 3.61 (q, J=4 Hz, 1H), 3.54 (q, J=4 Hz, 1H), 2.22 (q, J=8 Hz, 1H), 2.15 (q, J=8 Hz, 1H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 186.1, 161.6, 149.4, 147.0, 110.5, 87.7, 85.7, 69.6, 60.5, 40.5.

General procedure for Synthesis of dU$^{\text{bmnz}}$ [2]

A solution of 5-fdU (50mg, 0.2mmol) and 0.21mmol o-phenylenediamine derivatives in DMF (4mL) was stirred at room temperature for 5 min. Sc(OTf)$_3$ (10mg, 0.020mmol) and aqueous H$_2$O$_2$ (30%, 20µL) were added successively to the mixture, which was further stirred under air at room temperature for 4h. After removing the solvent in vacuo, the residue was purified by column chromatography (SiO$_2$, MeOH in CHCl$_3$, 5%-8%) to give dU$^{\text{bmnz}}$.

5-(1H-benzo[d]imidazol-2-yl)-1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (3a):

![Image of the compound](image)

Yield= 83%, 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.19(s, 1H), 11.93(s, 1H), 8.80(s, 1H), 7.56(d, J= 3.3 Hz, 2H), 7.12(d, J= 3.3 Hz, 2H), 6.19(t, J= 6.6 Hz, 1H), 5.33(d, J=4.2 Hz, 1H), 5.05(d, J=4.8 Hz, 1H), 4.27(s, 1H), 3.86(d, J=2.4 Hz, 1H), 3.59(d, J=4.2 Hz, 2H), 2.22(t, J=5.4 Hz, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.5, 150.2, 146.7, 143.2, 141.6, 135.0, 122.2, 118.6, 112.9, 104.6, 88.5, 86.0, 71.2, 62.0, 56.7. HRMS (MALDI) calcd for C$_{16}$H$_{17}$N$_2$O$_5$ [M+H]$^+$: 345.1194; found: 345.1196.
1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(5-methoxy-1H-benzo[d]imidazol-2-yl)pyrimidine-2,4(1H,3H)-dione (3b):

Yield= 77%, the product is a mixture of two tautomers in the ratio: 4:6. 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.02(s, 1H), 11.91(br, 1H), 8.72(s, 1H), 7.44(t, J= 8.1 Hz, 1H), 7.13(s, 1H), 6.77(s, 1H), 6.20(t, J=6.3 Hz, 1H), 5.33(s, 1H), 5.06(s, 1H), 4.27(s, 1H), 3.86(s, 1H), 3.74(s, 3H), 3.60(s, 2H), 2.21(s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.6, 156.1, 150.2, 145.8, 144.0, 140.7, 137.7, 135.6, 129.5, 119.1, 112.1, 111.7, 88.5, 85.8, 71.2, 62.1, 56.0. HRMS (MALDI) calcd for C$_{17}$H$_{18}$Na$_1$N$_4$O$_6$ [M+Na]$^+$: 397.1119; found: 397.1114.

1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(5-methyl-1H-benzo[d]imidazol-2-yl)pyrimidine-2,4(1H,3H)-dione (3c):

Yield= 93%, 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.06(br, 1H), 11.92(s, 1H), 8.77(s, 1H), 7.44(d, J= 6.0 Hz, 1H), 7.36(s, 1H), 6.95(d, J=8.1 Hz, 1H), 6.20(t, J=6.6 Hz, 1H), 5.33(d, J=3.0 Hz, 1H), 5.07(s, 1H), 4.27(s, 1H), 3.86(s, 1H), 3.60(s, 2H), 2.38(s, 3H), 2.22 (s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 161.8, 149.4, 145.6, 140.6, 140.4, 130.6, 123.1, 118.3, 104.0, 87.7, 85.1, 70.4, 61.3, 56.0, 21.3. HRMS (ESI) calcd for C$_{17}$H$_{17}$N$_4$O$_5$ [M-H]$^-$: 357.1204; found: 357.1204.
5-(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)-1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (3d):

Yield= 87%, 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 11.96(br, 1H), 11.90(s, 1H), 8.74(s, 1H), 7.33(s, 2H), 6.20(s, 1H), 5.32(s, 1H), 5.06(s, 1H), 4.27(s, 1H), 3.85(s, 1H), 3.60(s, 2H), 2.27(s, 6H), 2.21 (s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 161.8, 149.4, 145.0, 140.3, 130.0, 129.9, 104.1, 87.7, 85.1, 79.1, 70.5, 61.3, 56.0, 20.0.

HRMS (ESI) calcd for C$_{18}$H$_{19}$N$_4$O$_5$ [M-H]$^-$: 371.1361; found: 371.1360.

5-(5-(tert-butyl)-1H-benzo[d]imidazol-2-yl)-1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (3e):

Yield= 84%, the product is a mixture of two tautomers in the ratio: 3:7. 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 11.96(s, 1H), 11.84(s, 1H), 8.70(s, 1H), 7.40(s, 2H), 7.14(d, J=8.4 Hz, 1H), 6.12(s, 1H), 5.26(s, 1H), 5.01(s, 1H), 4.20(s, 1H), 3.78(s, 1H), 3.53(s, 2H), 2.14 (s, 2H), 1.24(s, 9H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.4, 162.0, 149.6, 145.8, 144.5, 142.6, 141.7, 140.8, 119.7, 104.2, 87.9, 85.3, 70.6, 61.4, 55.9, 35.9, 31.8.

HRMS (ESI) calcd for C$_{20}$H$_{23}$N$_4$O$_5$ [M-H]$^-$: 399.1674; found: 399.1664.
5-(5-bromo-1H-benzo[d]imidazol-2-yl)-1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyrimidine-2,4(1H,3H)-dione (3f):

Yield= 83%, the product is a mixture of two tautomers in the ratio: 5:5. 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.36(s, 1H), 11.96(br, 1H), 8.85(s, 1H), 7.77(s, 1H), 7.55(d, J=8.1 Hz, 1H), 7.27(s, 1H), 6.18(s, 1H), 5.32(s, 1H), 5.04(s, 1H), 4.27(s, 1H), 3.87(s, 1H), 3.60(s, 2H), 2.23(s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.6, 150.2, 148.2, 144.7, 142.3, 136.3, 134.2, 125.2, 120.9, 115.6, 104.1, 88.6, 86.1, 71.2, 62.0, 56.7. HRMS (ESI) calcd for C$_{16}$H$_{14}$Br$_1$N$_4$O$_5$ [M-H]$^-$: 421.0153; found: 421.0146.

1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(5-nitro-1H-benzo[d]imidazol-2-yl)pyrimidine-2,4(1H,3H)-dione (3g):

Yield= 92%, the product is a mixture of two tautomers in the ratio: 5.8:4.2. 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.80(s, 1H), 12.05(br, 1H), 9.02(s, 1H), 8.53(s, 1H), 8.07(s, 1H), 7.77(d, J=9.0 Hz, 1H), 6.19(t, J=6.3 Hz, 1H), 5.34(s, 1H), 5.09(s, 1H), 4.30(s, 1H), 3.91(s, 1H), 3.64(s, 2H), 2.27(s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 162.7, 152.5, 150.3, 148.2, 143.6, 140.1, 134.6, 118.3, 114.7, 109.8, 103.5, 88.8, 86.6, 71.3, 62.1, 56.9. HRMS (ESI) calcd for C$_{16}$H$_{14}$N$_5$O$_7$ [M-H]$^-$: 388.0899; found: 388.0881.
1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1H-naphtho[2,3-d]imidazol-2-yl)pyrimidine-2,4(1H,3H)-dione (3h):

Yield= 80%, 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 12.32(s, 1H), 12.08(s, 1H), 9.05(s, 1H), 8.12(d, J= 12.3 Hz, 2H), 8.01(s, 2H), 7.41(d, J= 4.2 Hz, 2H), 6.28(s, 1H), 5.42(d, J=3.0 Hz, 1H), 5.17(s, 1H), 4.37(s, 1H), 3.97(s, 1H), 3.71(s, 2H), 2.33(s, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 161.9, 150.6, 149.6, 143.1, 142.5, 135.3, 129.9, 129.8, 128.0, 127.5, 123.5, 123.0, 114.0, 107.6, 103.5, 88.0, 85.6, 70.6, 61.4, 56.1.

HRMS (ESI) calcd for C$_{20}$H$_{17}$N$_4$O$_5$ [M-H]:393.1204; found: 393.1199.

1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-5-(1H-perimidin-2-yl)pyrimidine-2,4(1H,3H)-dione (3i):

Yield= 79%, 1H NMR (300 MHz, DMSO-d$_6$) δ(ppm): 11.97(s, 1H), 10.68(s, 1H), 8.84(s, 1H), 7.07(d, J= 8.1 Hz, 1H), 6.99(d, J=7.2 Hz, 1H), 6.93(d, J= 7.2 Hz, 2H), 6.52(d, J=7.5 Hz, 1H), 6.35(d, J=6.3 Hz, 1H), 6.09(s, 1H), 5.27(d, J=3.9 Hz, 1H), 4.98(s, 1H), 4.20(s, 1H), 3.82(s, 1H), 3.56(s, 2H), 2.16(d, J=4.5 Hz, 2H); 13C NMR (DMSO-d$_6$, 75 MHz) δ: 163.2, 149.3, 149.1, 144.7, 143.9, 137.0, 135.1, 128.9, 128.9, 127.9, 121.8, 118.5, 117.9, 104.1, 102.7, 97.9, 85.8, 70.2, 61.1, 56.0. HRMS (ESI) calcd for C$_{20}$H$_{17}$N$_4$O$_5$ [M-H]:393.1204; found: 393.1199.
5,5-difluoro-10-(2-(1-(4-hydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)-2,4-dioxo-1,2,3,4-tetrahydropyrimidin-5-yl)-1H-benzo[d]imidazol-6-yl)-1,3,7,9-tetramethyl-5H-dipyrrolo[1,2-c:2',1'-f][1,3,2]diazaborinin-4-ium-5-uide (3j):

Yield = 77%, the product is a mixture of two tautomers in the ratio: 5:5. 1H NMR (400 MHz, DMSO- d_6) δ (ppm): 12.46 (s, 1H), 12.00 (s, 1H), 8.89 (s, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.52 (s, 1H), 7.08 (s, 1H), 6.20 (s, 1H), 6.16 (s, 2H), 5.33 (s, 1H), 5.05 (s, 1H), 4.36 (s, 1H), 3.88 (s, 1H), 3.61 (s, 2H), 2.45 (s, 6H), 2.23 (s, 2H), 1.26 (s, 6H); 13C NMR (DMSO- d_6, 75 MHz) δ: 163.6, 162.6, 155.3, 150.2, 148.3, 148.1, 143.6, 142.2, 135.5, 132.0, 127.9, 121.9, 119.6, 117.8, 114.1, 112.3, 104.3, 88.5, 86.1, 73.2, 71.1, 62.0, 56.7, 14.9, 14.7. HRMS (ESI) calcd for C$_{29}$H$_{28}$B$_1$F$_2$N$_6$O$_5$ [M-H]$^-$: 588.2224; found: 588.2239.

Compound 2j was prepared by the literature methods.$^{[3]}$

1H NMR (300 MHz, DMSO- d_6) δ (ppm): 6.79 (d, 1H, J = 8.4 Hz); 6.59 (s, 1H); 6.58 (d, 1H, J = 8.4 Hz); 5.96 (s, 2H); 3.52 (s, 2H); 3.44 (s, 2H); 2.54 (s, 6H); 1.53 (s, 6H).

13C NMR (DMSO- d_6, 75 MHz) δ: 154.9, 143.3, 142.7, 135.4, 135.4, 131.9, 126.5, 120.8, 119.8, 117.0, 116.0, 14.6, 14.6.
Figure S1. The 1H NMR, 13C NMR spectra of 5-fdU
Figure S2. The $^1\!H$ NMR, $^{13}\!C$ NMR spectra of 3a
Figure S3. The 1H NMR, 13C NMR spectra of 3b
Figure S4. The 1H NMR, 13C NMR spectra of 3c
Figure S5. The 1H NMR, 13C NMR spectra of 3d
Figure S6. The 1H NMR, 13C NMR spectra of 3e
Figure S7. The 1H NMR, 13C NMR spectra of 3f
Figure S8. The 1H NMR, 13C NMR spectra of 3g
Figure S9. The 1H NMR, 13C NMR spectra of 3h
Figure S10. The 1H NMR, 13C NMR spectra of 3i
Figure S11. The 1H NMR, 13C NMR spectra of 3j
Figure S12. UV absorption spectra of 1μM 3a in aqueous solution

Figure S13. UV absorption spectra of 1μM 3b in aqueous solution
Figure S14. UV absorption spectra of 1μM 3c in aqueous solution

Figure S15. UV absorption spectra of 1μM 3d in aqueous solution
Figure S16. UV absorption spectra of 1μM 3e in aqueous solution

Figure S17. UV absorption spectra of 1μM 3f in aqueous solution
Figure S18. UV absorption spectra of 1μM 3g in aqueous solution

Figure S19. UV absorption spectra of 1μM 3h in aqueous solution
Figure S20. UV absorption spectra of 1μM 3i in aqueous solution

Figure S21. UV absorption spectra of 1μM 3j in aqueous solution
Figure S22. UV absorption spectra of 1μM 3a in organic solvents

Figure S23. UV absorption spectra of 1μM 3b in organic solvents
Figure S24. UV absorption spectra of 1μM 3c in organic solvents

Figure S25. UV absorption spectra of 1μM 3d in organic solvents
Figure S26. UV absorption spectra of 1μM 3e in organic solvents

Figure S27. UV absorption spectra of 1μM 3f in organic solvents
Figure S28. UV absorption spectra of 1μM 3j in organic solvents

Figure S29. Fluorescence emission spectra of 1μM 3a in aqueous solution
Figure S30. Fluorescence emission spectra of 1μM 3b in aqueous solution

Figure S31. Fluorescence emission spectra of 1μM 3c in aqueous solution
Figure S32. Fluorescence emission spectra of 1μM 3d in aqueous solution

Figure S33. Fluorescence emission spectra of 1μM 3e in aqueous solution
Figure S34. Fluorescence emission spectra of 1μM 3f in aqueous solution

Figure S35. Fluorescence emission spectra of 1μM 3g in aqueous solution
Figure S36. Fluorescence emission spectra of 1μM 3h in aqueous solution

Figure S37. Fluorescence emission spectra of 1μM 3i in aqueous solution
Figure S38. Fluorescence emission spectra of 1μM 3j in aqueous solution

Figure S39. Fluorescence emission spectra of 1μM 3a in organic solvents
Figure S40. Fluorescence emission spectra of 1µM 3b in organic solvents

Figure S41. Fluorescence emission spectra of 1µM 3c in organic solvents
Figure S42. Fluorescence emission spectra of 1μM 3d in organic solvents

Figure S43. Fluorescence emission spectra of 1μM 3e in organic solvents
Figure S44. Fluorescence emission spectra of 1μM 3f in organic solvents

Figure S45. Effect of pH on fluorescence intensity of 1μM 3a
Figure S46. Effect of pH on fluorescence intensity of 1μM 3b

Figure S47. Effect of pH on fluorescence intensity of 1μM 3d
Figure S48. Effect of pH on fluorescence intensity of 1μM 3e

Figure S49. Effect of pH on fluorescence intensity of 1μM 3c
Figure S50. Fluorescence emission spectra of 2j (black) and 3j (red) in water with concentration of 10μM, and the photographs of 2j (left) and 3j (right).

Figure S51. Fluorescence spectrum of changing fluorescence intensity during the pH titration of 1μM 3a.
Figure S52. Fluorescence spectrum of changing fluorescence intensity during the pH titration of 1μM 3b

Figure S53. Fluorescence spectrum of changing fluorescence intensity during the pH titration of 1μM 3d
Figure S54. Fluorescence spectrum of changing fluorescence intensity during the pH titration of 1μM 3e

Figure S55. Fluorescence spectrum of changing fluorescence intensity during the pH titration of 1μM 3c
Figure S56. Effect of pH on fluorescence intensity of 1μM 3a (pKa=4.4), 1μM 3b (pKa=4.9), 1μM 3c (pKa=4.8), 1μM 3d (pKa=4.3), 1μM 3e (pKa=4.5).

References: