Synthesis of a Series of Novel Chiral Lewis Base Catalysts and Application in Promoting Asymmetric Hydrosilylation of β-Enamino Esters

Xing Chen, Xiao-Yan Hu, Chang Shu, Yong-Hong Zhang, Yong-Sheng Zheng, Yan Jiang, Wei-Cheng Yuan, Bo Liu,^{*} Xiao-Mei Zhang^{*}

Supporting Information

Table of Contents

1. General information	S2
2. Preparation and characterization of catalysts (2a-2g)	S2
3. Asymmetric hydrosilylation of β -enamino esters	S10
4. Preparation and Characterization of compound 9, 10 and 11	S17
5. References	S19
6. Copes of NMR Spectra	S20
7. Copes of HPLC Spectra	

1. General information

All starting materials were of the highest commercially available grade and used without further purification. All solvents used in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by thin layer chromatography using silica gel HSGF254 plates. Flash chromatography (FC) was performed using silica gel HG/T2354-92. ¹H NMR and ¹³C NMR (300 and 75 MHz, respectively) spectra were recorded in CDCl₃. ¹H NMR chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl₃, δ 7.26 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, brs = broad singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (CDCl₃, δ 77.0 ppm). All enantiomeric ratios have been controlled by co-injections of the pure sample with the racemic compounds.

2. Preparation and characterization of catalysts (2a-2g)

2a: $R^2 = Ph$, $R^3 = H$ **2b**: $R^2 = p \cdot FC_6H_4$, $R^3 = H$ **2c**: $R^2 = p \cdot MeOC_6H_4$, $R^3 = H$ **2d**: $R^2 = p \cdot MeC_6H_4$, $R^3 = H$ **2e**: $R^2 = Ph$, $R^3 = Me$ **2f**: $R^2 = Bn$, $R^3 = H$ **2g**: $R^2 = Cy$, $R^3 = H$

(1) Preparation and characterization of catalysts (2a-2f):

General procedure for synthesis of **4a-4e**:

Compounds **4a-4e** were synthesized according to the literature method.^[1] To a stirred suspension of (*S*)-methyl 2-amino-3-hydroxypropanoate hydrochloride **3** (3.0 g, 19.28 mmol) in Et₂O (80 mL) was added dropwise Grignard reagent [prepared from Mg (3.28 g, 134.97 mmol) and appropriate bromide (136.88 mmol) in Et₂O (100 mL)] at 10 °C. After stirring for overnight, only sufficient water was added to ensure that the magnaesium salt was converted into a coarse granular structure without forming an aqueous phase. The mixture was then filtered, and washed with DCM (3 × 100 mL), dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on silica gel column [PET: EA = 1:1, then MeOH: DCM = 1: 10] to give the product. Yield: 88 % for **4a** (4.12 g, white solid); 66 % for **4b** (3.55 g, colorless oil); 87 % for **4c** (5.08 g, white solid); 84 % for **4d** (4.4 g, yellow oil); 81 % for **4e** (4.25 g, colorless oil).

General procedure for synthesis of 12a-12e:

A 250 mL three-necked flask is charged with picolinic acid (1.83 g, 14.87 mmol) and the flask is flushed with nitrogen. It is dissolved in DCM (80 mL) and *N*-methylmorpholine (1.82 mL). The reaction mixture was cooled to -15 °C, then isobutylchloroformate (2.14 g, 1.0 eq) was added dropwise over 10 min. The reaction mixture was stirred at this temperature for 1 hour. Then a solution of compound **4** (15.66 mmol) in DCM (50 mL) and NMM (2.5 mL) was added dropwise to the above reaction mixture at -10 °C. The reaction mixture was allowed to warm to room temperature, and stirred for an additional hour. The reaction mixture was diluted with DCM (100 mL), washed with 1N HCl (100 mL), H₂O (100 mL), brine and dried over anhydrous Na₂SO₄. Solvent was removed in vacuo and the residue was purified on silica gel column [PET: EA = 3:1] to give the pure product.

(S)-N-(1,3-dihydroxy-1,1-diphenylpropan-2-yl)picolinamide (12a):white solid, yield 85%, ¹H NMR (300 MHz, CDCl₃): δ 2.50 (brs, 1H), 3.86 (d, J = 10.9 Hz, 1H), 3.99 (d, J = 11.5 Hz, 1H), 4.88 (s, 1H), 5.16 (dt, J₁ = 2.7 Hz, J₂ = 8.8 Hz, 1H), 7.10 (t, J = 7.2 Hz, 1H), 7.20-7.25 (m, 3H), 7.32-7.37 (m, 3H), 7.52-7.59 (m, 4H), 7.78 (td, J₁ = 1.5 Hz, J₂ = 7.7 Hz, 1H), 8.11 (d, J = 7.7 Hz, 1H), 8.46 (d, J = 4.7 Hz, 1H), 8.83 (d, *J* = 9.1 Hz, 1H).

(S)-N-(1,1-bis(4-fluorophenyl)-1,3-dihydroxypropan-2-yl) picolinamide (12b): white solid, yield 86%, ¹H NMR (300 MHz, CDCl₃): δ 2.67 (t, J = 4.9 Hz, 1H), 3.84-3.90 (m, 1H), 3.96-3.99 (m, 1H), 5.06-5.09 (m, 1H), 5.17 (s, 1H), 6.86-6.92 (m, 2H), 7.01-7.07 (m,

1H), 7.34-7.39 (m, 1H), 7.45-7.55 (m, 4H), 7.79 (td, $J_1 = 1.6$ Hz, $J_2 = 7.7$ Hz, 1H), 8.08 (d, J = 7.8 Hz, 1H), 8.44 (d, J = 4.1 Hz), 8.81 (d, J = 8.8 Hz, 1H).

(S)-N-(1,3-dihydroxy-1,1-bis(4-methoxyphenyl)propan-2-yl) picolinamide (12c): white solid, yield 88%, ¹H NMR (300 MHz, CDCl₃): δ 5.58 (t, J = 5.0 Hz, 1H), 3.68 (s, 3H), 3.78 (s, 3H), 3.84-3.88 (m, 1H), 3.93-3.98 (m, 1H), 4.72 (s, 1H), 5.04-5.07 (m,

1H), 6.75 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.34-7.38 (m, 1H), 7.43 (t, *J* = 8.8 Hz), 7.79 (td, *J*₁ = 1.5 Hz, *J*₂ = 7.7 Hz, 1H), 8.11 (d, *J* = 7.8 Hz, 1H), 8.46 (d, *J* = 4.6 Hz, 1H), 8.82 (d, *J* = 8.7 Hz, 1H).

(S)-N-(1,3-dihydroxy-1,1-dip-tolylpropan-2-yl)picolinamide (12d): white solid, yield 79%, ¹H NMR (300 MHz, CDCl₃): δ 2.19 (s, 3H), 2.30 (s, 3H), 2.73-2.77 (m, 1H), 3.81-3.87 (m, 1H), 3.92-3.98 (m, 1H), 4.80 (s, 1H), 5.08-5.13 (m, 1H), 7.01 (d, J = 8.1 Hz, 2H), 7.14 (d, J =

8.0 Hz, 2H), 7.30-7.35 (m, 1H), 7.37-7.44 (m, 4H), 7.76 (td, *J*₁ = 1.6 Hz, *J*₂ = 8.5 Hz, 1H), 8.09 (d, *J* = 7.8 Hz, 1H), 8.42 (d, *J* = 4.7 Hz, 1H), 8.82 (d, *J* = 8.5 Hz, 1H).

(*S*)-*N*-(**3-benzyl-1,3-dihydroxy-4-phenylbutan-2-yl**)**picolinamide** (12e): colorless oil, yield 76%, ¹H NMR (300 MHz, CDCl₃): δ 2.82 (d, *J* = 14.1

^{Bn} Hz, 1H), 2.90 (d, J = 14.0, 1H), 2.97 (d, J = 14.0, 1H), 3.12 (d, J = 14.1, 1H), 3.71 (s, 1H), 3.96-4.07 (m, 2H), 4.06-4.17 (m, 1H), 4.26 (brs, 1H), 7.09-7.36 (m, 11H), 7.74 (td, $J_I = 1.6$ Hz, $J_2 = 8.5$ Hz, 1H), 8.07 (d, J = 7.8 Hz, 1H), 8.43 (d, J = 4.3 Hz, 1H), 8.69 (d, J = 8.2 Hz, 1H).

Synthesis and characterization of 2a-2f:

Compound **12a** (3.60 g, 10.33 mmol) was dissolved in EA (100 mL). Then, dimethoxymethane (2.1 mL, 2eq.) and BF₃.Et₂O (4.2 mL, 3eq.) was

(2a):

added to the solution. The reaction mixture was refluxed for 6 hours. The reaction mixture was cooled to room temperature and quenched with saturated NaHCO₃ (100 mL), H₂O (50 mL). The mixture was extracted with EA (100 mL × 3), washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified on silica gel column [PET: EA = 3:1] to give a colorless oil, which solidified under high vacuum, **2a** (2.30 g), yield 62 %. ¹H NMR (300 MHz, CDCl₃): δ 4.04 (d, *J* = 11.4 Hz, 1H), 4.21 (d, *J* = 11.4 Hz, 1H), 5.01 (d, *J* = 6.4 Hz, 1H), 5.18 (d, *J* = 6.4 Hz, 1H), 5.37 (d, *J* = 9.7 Hz, 1H), 6.93-6.98 (m, 1H), 7.09-7.14 (m, 2H), 7.20-7.27 (m, 2H), 7.35-7.46 (m, 4H), 7.63 (td, *J*₁ = 1.7 Hz, *J*₂ = 7.7 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 8.42-8.44 (m, 1H), 8.87 (d, *J* = 9.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 47.9, 67.5, 81.7, 89.1, 121.7, 124.4, 125.7, 126.4, 126.6, 127.4, 127.6, 128.9, 136.7, 140.9, 143.6, 147.8, 149.0, 163.2. ESI-HR MS exact mass calcd. for (C₂₂H₂₀N₂NaO₃)⁺ requires m/z 383.1366, found m/z 383.1375.

(S)-N-(4,4-bis(4-fluorophenyl)-1,3-dioxan-5-yl)picolinamide (2b):

Compound **12b** (3.84 g, 10.0 mmol) was dissolved in THF (60 mL). Then, $(CHO)_n$ (6.06 g, 20 eq.) and BF₃.Et₂O (4.8 mL) was added to the solution, and the reaction mixture was heated to reflux overnight. THF was removed in vacuum, the residue was dissolved in DCM (100 mL), and

washed with saturated NaHCO₃ (80 mL), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified on silica gel [PET: EA = 4:1] to give a colorless oil, which solidified in vacuum, **2b** (1.80 g), yield 45 %. ¹H NMR (300 MHz, CDCl₃): δ 4.00 (d, J = 11.4 Hz, 1H), 4.16 (d, J = 11.5 Hz, 1H), 4.91 (d, J = 6.5 Hz, 1H), 5.13 (d, J = 6.4 Hz, 1H), 5.28 (d, J = 9.7 Hz, 1H), 6.74-6.80 (m, 2H), 7.02-7.08 (m, 2H), 7.23-7.48 (m, 5H), 7.62-7.68 (m, 1H), 7.95 (d, J = 7.7 Hz, 1H), 8.41-8.43 (m, 1H), 8.84 (d, J = 9.7 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 47.7, 67.6 (d, J = 10.6 Hz, 1C), 81.2, 89.0, 114.5 (d, J = 21.3 Hz, 2C), 116.0 (d, J = 21.3 Hz, 2C), 121.8, 125.9, 126.3 (d, J = 8.0

Hz, 2C), 128.4 (d, J = 7.9 Hz, 2C), 136.6 (d, J = 3.2 Hz, 1C), 136.9, 139.4 (d, J = 2.6 Hz, 1C), 147.9, 148.8, 161.1 (d, J = 244.1 Hz, 1C), 161.8 (d, J = 246.4 Hz, 1C), 163.1. ESI-HR MS exact mass calcd. for $(C_{22}H_{18}F_2N_2NaO_3)^+$ requires m/z 419.1178, found m/z 419.1186.

(S)-N-(4,4-bis(4-methoxyphenyl)-1,3-dioxan-5-yl)picolinamide (2c):

Compound **12c** (3.00 g, 7.34 mmol) was dissolved in THF (60 mL). Then, $(CHO)_n$ (4.45 g, 20 eq.) and BF₃.Et₂O (3 mL) was added to the solution, and the reaction mixture was heated to reflux for 4 hours. THF was removed in vacuo, the residue was dissolved in DCM (100 mL), and

washed with saturated NaHCO₃ (80 mL), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified on silica gel [PET : EA = 4:1] to give a colorless oil, which solidified under high vacuum, **2c** (1.8 g), 58 % yield. ¹H NMR (300 MHz, CDCl₃): δ 3.61 (s, 3H), 3.80 (s, 3H), 4.0 (d, *J* = 11.2 Hz, 1H), 4.20 (d, *J* = 11.2 Hz, 1H), 5.00 (d, *J* = 6.4 Hz, 1H), 5.14 (d, *J* = 6.4 Hz, 1H), 5.22 (d, *J* = 9.7 Hz, 1H), 6.64 (d, *J* = 8.9 Hz, 2H), 6.92 (d, *J* = 8.9 Hz, 2H), 7.28 (d, *J* = 8.9 Hz, 2H), 7.32-7.37 (m, 1H), 7.42 (d, *J* = 8.8 Hz, 2H), 7.74 (td, *J*₁ = 1.7 Hz, *J*₂ = 7.7 Hz, 1H), 8.00 (d, *J* = 7.8 Hz, 1H), 8.50-8.52 (m, 1H), 8.83 (d, *J* = 9.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 47.8, 54.6, 54.8, 67.4, 81.2, 88.8, 112.8, 114.1, 121.6, 125.5, 125.7, 127.7, 133.0, 136.3, 136.7, 147.8, 148.9, 157.6, 158.4, 163.1. ESI-HR MS exact mass calcd. for (C₂₄H₂₄N₂NaO₃)⁺ requires m/z 443.1577, found m/z 443.1578.

(S)-N-(4,4-dip-tolyl-1,3-dioxan-5-yl)picolinamide (2d):

Compound **12d** (2.70 g, 7.17 mmol) was dissolved in EA (50 mL). Then, dimethoxymethane (1.46 mL, 2eq) and BF₃.Et₂O (2.44 mL, 2.5eq.) was added to the solution, and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was washed with saturated

NaHCO₃ (50 ml), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified on silica gel column [PET: EA = 5:1] to give a colorless oil, which solidified under high vacuum, **2d** (0.94 g), 34 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.10 (s, 3H), 2.32 (s, 3H), 4.02 (d, *J* = 11.4 Hz, 1H), 4.21 (d, *J* = 11.5 Hz,

1H), 5.03 (d, J = 6.4 Hz, 1H), 5.16 (d, J = 6.4 Hz, 1H), 5.29 (d, J = 9.6 Hz, 1H), 6.92 (d, J = 8.0 Hz, 2H), 7.20 (d, J = 8.0 Hz, 2H), 7.26-7.33 (m, 3H), 7.40 (d, J = 8.2 Hz, 2H), 7.71 (td, $J_I = 1.6$ Hz, $J_2 = 7.7$ Hz, 1H), 7.80 (d, J = 7.8 Hz, 1H), 8.49-8.50 (m, 1H), 8.85 (d, J = 9.6 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 20.7, 20.9, 48.0, 67.6, 81.7, 89.1, 121.8, 124.3, 125.8, 126.5, 128.5, 129.7, 135.8, 136.8, 137.1, 138.2, 141.1, 148.0, 149.3, 163.3. ESI-HR MS exact mass calcd. for $(C_{24}H_{24}N_2NaO_3)^+$ requires m/z 411.1679, found m/z 411.1682.

(S)-N-(2,2-dimethyl-4,4-diphenyl-1,3-dioxan-5-yl)picolinamide (2e):

To a solution of compound **12a** (0.17 g, 0.5 mmol) in DCM (5 mL) were added DMP (0.26 g, 2.5 mmol) and p-TsOH.H₂O (10 mg, 0.05

mmol) at 0 °C. After stirring at room temperature for 12 hours, the mixture was poured into saturated NaHCO₃ (10 mL) and extracted with DCM (15 mL × 3), washed with water and brine, dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified on silica gel column [PET: EA = 4:1] to give a white solid **2e** (0.10 g), 51 % yield. ¹H NMR (300 MHz, CDCl₃): δ 0.97 (s, 3H), 1.66 (s, 3H), 3.92 (dd, J_1 = 2.3 Hz, J_2 = 11.9 Hz, 1H), 4.49 (dd, J_1 = 1.1 Hz, J_2 = 11.9 Hz, 1H), 5.25 (d, J = 9.6 Hz, 1H), 6.88-6.93 (m, 1H), 7.02-7.08 (m, 2H), 7.19-7.32 (m, 7H), 7.47-7.50 (m, 2H), 7.67 (td, J_1 = 1.7 Hz, J_2 = 7.7 Hz, 1H), 7.91 (d, J = 7.8 Hz, 1H), 8.44-8.46 (m, 1H), 8.65 (d, J = 9.5 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 23.7, 31.0, 46.4, 61.8, 79.7, 100.0, 121.8, 124.9, 125.7, 126.2, 127.1, 127.3, 127.5, 128.2, 136.8, 144.3, 145.4, 148.0, 149.3, 163.0. ESI-HR MS exact mass calcd. for (C₂₄H₂₄N₂NaO₃)⁺ requires m/z 411.1679, found m/z 411.1690.

(S)-N-(4,4-dibenzyl-1,3-dioxan-5-yl)picolinamide (2f):

Compound **12e** (2.32 g 6.16 mmol) was dissolved in EA (100 mL). Then, dimethoxymethane (1.25 mL, 2eq.) and $BF_3.Et_2O$ (2.1 mL, 2.5eq)

was added to the solution, and the reaction mixture was stirred at room temperature for 24 hours. The reaction mixture was washed with saturated NaHCO₃ (30 mL), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. The solvent was removed in vacuo, and the residue was purified on silica gel column [PET: EA = 4:1] to give a colorless oil, which solidified under high vacuum, **12e** (1.07 g), 45 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.88 (d, *J* =

14.5 Hz, 1H), 3.09 (dd, J = 14.7 Hz, 34.5 Hz, 2H), 3.33 (d, J = 14.6 Hz, 1H), 3.88 (dd, $J_1 = 5.2$ Hz, $J_2 = 11.5$ Hz, 1H), 4.25 (dd, $J_1 = 2.8$ Hz, $J_2 = 11.5$ Hz, 1H), 4.33-4.40 (m, 1H), 5.20 (dd, $J_1 = 6.60$ Hz, $J_2 = 17.8$ Hz, 2H), 7.22-7.35 (m, 10H), 7.41-7.46 (m, 1H), 7.85 (td, $J_1 = 1.6$ Hz, $J_2 = 7.7$ Hz, 1H), 8.19-8.22 (m, 1H), 8.58-8.59 (m, 1H), 8.73 (d, J = 9.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 37.3, 38.5, 47.4, 66.3, 78.5, 87.5, 122.1, 126.2, 126.3, 126.5, 127.9, 128.1, 130.5, 139.7, 135.8, 136.1, 137.2, 148.1, 149.3, 163.6. ESI-HR MS exact mass calcd. for (C₂₄H₂₄N₂NaO₃)⁺ requires m/z 411.1679, found m/z 411.1685.

(2) Preparation and characterization of catalyst 2g:

Methyl *L*-serinate hydrochloride **3** (11.89 g, 76.42 mmol) was suspended in THF (150 mL), Then Et₃N (16.62 g, 164.3 mmol) was added. The resulting white suspension was cooled to 0 °C and a solution of $(Boc)_2O$ (16.66 g, 76.37 mmol) in THF (75 mL) was added dropwise over 30 min. The mixture was allowed to warm to room temperature and stirred for 12 hours. The solvent was removed in vacuo, and the residue partitioned between Et₂O (100 mL) and H₂O (100 mL). The aqueous phase was extracted with Et₂O (60 mL × 2), and the organic phase was washed with 1*N* HCl (60 mL), saturated NaHCO₃ (60 mL) and brine (100 mL), dried over anhydrous Na₂SO₄. Solvent was removed to afford *N*-(Boc)-*L*-serine methyl ester (**5**) as a colorless oil, 15.90 g, 95 % yield.

To a stirred suspension of Grignard reagent [prepared from Mg (5.08 g, 209 mmol) and 1-bromocyclohexane (35.55 g, 218.05 mmol) in Et_2O (150 mL)] was added dropwise to a

solution of N-(Boc)-L-serine methyl ester 5 (6.55 g, 29.87 mmol) in Et₂O (80 mL) at -10 °C. After stirring overnight, the resulting mixture was quenched with saturated NH₄Cl (100 mL) and H₂O (100 mL). The mixture was extracted with EtOAc (3×100 mL), and washed with brine, dried over anhydrous Na₂SO₄. Concentration in vacuo gave a residue, which was purified silica column [PET: 10:1] on gel ΕA = to give (S)-tert-butyl 1,1-dicyclohexyl-1,3-dihydroxypropan-2-ylcarbamate (13) as a white solid, 6.16 g, 58 % yield.

HO HO BOCHN (S)-tert-butyl 1,1-dicyclohexyl-1,3-dihydroxypropan-2-ylcarbamate (13): white solid, yield 58 %, ¹H NMR (300 MHz, CDCl₃): δ 1.07-1.25 (m, 10H), 1.46 (s, 9H), 1.65-1.80 (m, 12H), 2.45-2.48 (m, 1H), 2.63 (brs, 1H), 3.78-3.97 (m, 3H), 5.39 (d, J = 7.1 Hz, 1H).

The white solid **13** (6.16 g) was dissolved in ethyl acetate, and cooled to 0 $^{\circ}$ C. Then hydrogen chloride (gas) was bubbled in the solution for 2 hours. The product was filtered, washed with ethyl acetate, gave a white solid **6**, 3.52 g, 70 % yield.

A 100 mL of three-necked flask was charged with picolinic acid (0.92 g, 7.44 mmol) and the flask was flushed with nitrogen. Then DCM (25 mL) and *N*-methylmorpholine (1.0 mL) were introduced in the flask to dissolve the material. The reaction mixture was cooled to -15 °C, then 1.15 mL of isobutylchloroformate (1.2 eq.) was added dropwise over 5 min. The reaction mixture was stirred at this temperature for 1 hour. Then a solution of compound **6** (2.50 g, 8.56 mmol) in DCM (40 mL) and NMM (2.2 mL) was added dropwise to the above reaction mixture at -10 °C. The reaction mixture was allowed to warm to room temperature, and stirred for one additional hour. The reaction mixture was diluted with DCM (50 mL), washed with 1*N* HCl (50 mL), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. Solvent was removed in vaccuo, and the residue was purified on silica gel [PET: EA = 3:1] to give a white solid **12f**, 2.40 g, 90 % yield.

(*S*)-*N*-(1,1-dicyclohexyl-1,3-dihydroxypropan-2-yl)picolinamide (12f): white solid, yield 90 %, ¹H NMR (300 MHz, CDCl₃): δ 1.01-1.25 (m, 10H), 1.55-1.91 (m, 12H), 2.66 (s, 1H), 3.07 (brs, 1H), 3.93-4.08 (m, 2H), 4.37-4.40 (m, 1H), 7.40-7.45 (m, 1H), 7.84 (td, J_1 = 1.6 Hz, J_2 = 7.7 Hz, 1H), 8.18 (d, *J* = 7.8 Hz, 1H), 8.59 (d, *J* = 4.0 Hz, 1H), 8.85 (d, *J* = 8.2 Hz, 1H).

Compound **12f** (0.36 g, 1 mmol) was dissolved in THF (20 mL). Then, (CHO)_n (0.6 g, 20eq.) and BF₃.Et₂O (0.5 mL) was added to the solution, and the reaction mixture was heated to reflux for overnight. THF was removed in vacuo. The residue was dissolved in DCM (100 mL) and washed with saturated NaHCO₃ (30 mL), H₂O (50 mL), brine and dried over anhydrous Na₂SO₄. The Solvent was removed in vacuo, and the residue was purified on silica gel [PET: EA = 6:1] to give a colorless oil, solidified under high vacuum, **2g** (0.32 g), 86 % yield.

(S)-N-(4,4-dicyclohexyl-1,3-dioxan-5-yl)picolinamide (2g): white solid, 86%. ¹H NMR (300 MHz, CDCl₃): δ 0.81-1.36 (m, 11H), 1.52 (m, 11H), 2.30-2.37 (m, 1H), 3.74 (dd, J_1 = 2.4 Hz, J_2 = 11.8 Hz, 1H), 4.24-4.30 (m, 2H), 4.88 (d, J = 6.5 Hz, 1H), 5.00 (d, J = 6.5 Hz, 1H), 7.39-7.44 (m, 1H), 7.83 (td, J_1 = 1.6 Hz, J_2 = 7.7 Hz, 1H), 8.17 (d, J = 7.8 Hz, 1H), 8.60-8.61 (m, 1H),

8.97 (d, J = 10.0 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 26.7, 26.9, 27.3, 27.5, 27.8, 28.1, 28.6, 29.2, 40.8, 46.1, 46.5, 67.2, 79.6, 87.6, 122.0, 126.0, 137.1, 148.3, 149.7, 163.3. ESI-HR MS exact mass calcd. for $(C_{22}H_{32}N_2NaO_3)^+$ requires m/z 395.2305, found m/z 395.2314.

3. Asymmetric hydrosilylation of β -enamino esters:

 β -Enamino esters **7a-m**, **7o** and **7y**^[2], **7r**^[3], **7t**^[4], **7q**^[5], **7n**, **7p**, **7s**, **7u-7x**^[6] were prepared from the corresponding β -keto esters according to the literatures.

General procedure:

A solution of trichlorosilane dissolved in $(ClCH_2)_2$ (1/4, v/v, 0.3 mL, 2.0 equiv.) was added to a solution of the catalyst (10 mol %) and the corresponding β -enamino ester (0.3 mmol) in dry 1,2-dichloroethane (3 mL) at -10 °C. The reaction mixture was stirred at -10 °C for 10 hours. Then the reaction was quenched with saturated aqueous solution of NaHCO₃ (1 mL). The mixture was filtered through a pad of celite, washed with DCM (70 mL), and dried over anhydrous Na₂SO₄. The solution was filtered and the solvent was removed in vacuum. The residue was subjected to flash chromatography on silica gel with petroleum ether/ethyl acetate (15:1) as the eluent to afford the pure product. The ee values were determined using established HPLC techniques with chiral stationary phases.

The corresponding racemates were prepared using DMF as the catalyst.

methyl 3-phenyl-3-(phenylamino)propanoate (8a):

White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.80-2.86 (m, 2H), 3.65 (s, 3H), 4.58 (brs, 1H), 4.83 (t, J= 6.7 Hz, 1H), 6.56 (d, J= 7.7 Hz, 2H), 6.67 (t, J= 7.3 Hz, 1H), 7.10 (dd, J_1 = 7.5 Hz, J_2 = 8.3 Hz, 2H), 7.22-7.39 (m, 5H). HPLC analysis: 94 % ee, Chiralcel AD-H (hexane/iPrOH = 80/20, 1.0 mL/min), $t_{r-minor}$ = 11.7 min, $t_{r-major}$ = 10.1 min. [α]_D²⁰ = +1.4 (c 0.9, CHCl₃).

NH O

methyl 3-(4-fluorophenylamino)-3-phenylpropanoate (8b):

Colorless oil, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.74-2.88 (m, 2H), 3.66 (s, 3H), 4.50 (brs, 1H), 4.75-4.80 (m, 1H), 6.47-6.52 (m, 2H), 6.78-6.84 (m, 2H), 7.26-7.38 (m, 5H). HPLC analysis: 93 % ee, Chiralcel

AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 12.9 \text{ min}$, $t_{r-major} = 10.9 \text{ min}$. $[\alpha]_D^{20} = -12.1 (c \ 0.474, \text{CHCl}_3)$.

methyl 3-(4-chlorophenylamino)-3-phenylpropanoate (8c)

White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.73-2.88 (m, 2H), 3.66 (s, 3H), 4.62 (s, 1H), 4.75-4.80 (m, 1H), 6.46-6.50 (m, 2H), 7.04 (dd, $J_1 = 2.1$ Hz, $J_2 = 6.7$ Hz, 2H), 7.24-7.34 (m, 5H). HPLC

analysis: 91 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 14.7$ min, $t_{r-major} = 12.2$ min. $[\alpha]_D^{20} = +8.8$ (*c* 0.49, CHCl₃).

methyl 3-(4-bromophenylamino)-3-phenylpropanoate (8d) White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.73-2.88 (m,

2H), 3.66 (s, 3H), 4.62 (s, 1H), 4.75-4.79 (m, 1H), 6.41-6.45 (m, 2H),

7.15-7.34 (m, 7H). HPLC analysis: 92 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{\text{r-minor}} = 16.0 \text{ min}, t_{\text{r-major}} = 13.3 \text{ min}. [\alpha]_{\text{D}}^{20} = +15.1 (c \ 0.666, \text{CHCl}_3).$

methyl 3-phenyl-3-(p-tolylamino)propanoate (8e)

White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.21 (s, 3H), 2.76-2.86 (m, 2H), 3.66 (s, 3H), 4.10 (brs, 1H), 4.83 (t, J= 6.8 Hz, 1H), 6.50 (d, J= 8.2 Hz, 2H), 6.93 (d, J= 8.2 Hz, 2H), 7.23-7.40 (m, 5H).

HPLC analysis: 98 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 7.2$ min, $t_{r-major} = 6.3$ min. $[\alpha]_D^{20} = +5.1$ (*c* 0.666, CHCl₃).

methyl 3-(4-methoxyphenylamino)-3-phenylpropanoate (8f)

White solid, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.80-2.82 (m, 2H), 3.66 (s, 3H), 3.70 (s, 3H), 4.31 (brs, 1H), 4.83 (t, *J* = 6.7 Hz, 1H), 6.54 (d, *J* = 8.8 Hz, 2H), 6.68-6.72 (m, 2H), 7.23-7.39 (m, 5H). HPLC

analysis: 94 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 20.0$ min, $t_{r-major} = 17.4$ min. $[\alpha]_D^{20} = +9.1$ (*c* 0.496, CHCl₃).

methyl 3-(4-fluorophenyl)-3-(4-methoxyphenylamino)propanoate (5g)

White solid, 98 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.79 (d, J= 6.7 Hz, 2H), 3.66 (s, 3H), 3.71 (s, 3H), 4.35 (brs, 1H), 4.75 (t, J= 6.6

Hz, 1H), 6.50-6.53 (m, 2H), 6.72 (d, J= 8.8 Hz, 2H), 7.01 (t, J= 8.6 Hz, 2H), 7.27-7.37 (m, 2H). HPLC analysis: 88 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor}$ = 24.6 min, $t_{r-major}$ = 20.2 min. [α]_D²⁰ = -7.0 (*c* 0.8, CHCl₃).

methyl 3-(4-bromophenyl)-3-(4-methoxyphenylamino) propanoate (8h)

✓ White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.78 (d, J = 6.6 Hz, 2H), 3.67 (s, 3H), 3.71 (s, 3H), 4.25 (brs, 1H), 4.72 (t, J = 6.6

Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 2H), 6.72 (d, *J* = 8.8 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.44(d, *J* = 8.3 Hz, 2H). HPLC analysis: 92 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min),

 $t_{\text{r-minor}} = 23.7 \text{ min}, t_{\text{r-major}} = 21.2 \text{ min}. [\alpha]_{\text{D}}^{20} = +22.1 (c \ 1.2, \text{CHCl}_3).$

methyl 3-(4-methoxyphenyl)-3-(4-methoxyphenyl amino) propanoate (8j)

MeO

MeC

White solid, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.79 (d, J= 6.5 Hz, 2H), 3.66 (s, 3H), 3.71 (s, 3H), 3.79 (s, 3H), 4.15 (brs, 1H),

4.73 (t, J = 6.7 Hz, 1H), 6.55 (d, J = 8.9 Hz, 2H), 6.70-6.73 (m, 2H), 6.86 (d, J = 8.7 Hz, 2H), 7.28 (d, J = 8.7 Hz, 2H). HPLC analysis: 94 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 37.0$ min, $t_{r-major} = 34.7$ min. $[\alpha]_D^{20} = +19.7$ (*c* 0.94, CHCl₃).

methyl 3-(3-chlorophenyl)-3-(4-methoxyphenyl amino)propanoate (8k)

White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.76-2.81 (m, 2H), 3.66 (s, 3H), 3.70 (s, 3H), 4.31 (brs, 1H), 4.73 (t, *J* = 6.6 Hz, 1H), 6.50 (d, *J* = 8.8 Hz, 2H), 6.68-6.74 (m, 2H), 7.19-7.38 (m, 4H). HPLC

analysis: 94 % ee, Chiralcel OD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor}$ = 22.2 min, $t_{r-major}$ = 20.0 min. [α]_D²⁰ = +2.7(*c* 0.96, CHCl₃).

methyl 3-(2-chlorophenyl)-3-(4-methoxyphenyl amino)propanoate (81)

White solid, 98 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.71 (dd, J_1 = 8.5 Hz, J_2 = 15.0 Hz, 1H), 2.93 (dd, J_1 = 4.0 Hz, J_2 = 15.0 Hz, 1H), 3.66

(s, 3H), 3.69 (s, 3H), 4.62 (brs, 1H), 5.15 (dd, J_1 = 4.0 Hz, J_2 = 8.5 Hz, 1H), 6.47 (d, J = 8.8

Hz, 2H), 6.69 (d, J = 8.9 Hz, 2H), 7.36-7.45 (m, 4H). HPLC analysis: 80 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 17.8$ min, $t_{r-major} = 16.2$ min. $[\alpha]_D^{20} = -50.3$ (*c* 0.52, CHCl₃).

MeO NH O

NH O

methyl 3-(4-methoxyphenylamino)-3-(naphthalen-2-yl) propanoate (8m)

White solid, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.89-2.94 (m, 2H), 3.67 (s, 3H), 3.69 (s, 3H), 4.43 (brs, 1H), 4.95 (t, *J*=6.8 Hz, 1H),

6.59-6.73 (m, 4H), 7.44-7.54 (m, 3H), 7.82-7.86 (m, 4H). HPLC analysis: 96 % ee, Chiralcel AD-H (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{r-minor} = 23.7 \text{ min}$, $t_{r-major} = 25.1 \text{ min}$. [α]_D²⁰ = +23.7 (*c* 0.38, CHCl₃).

methyl 3-(4-(benzyloxy)phenyl)-3-(4-fluorophenyl amino) propanoate (8n)

White solid, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.80 (d, J=

BnO⁻¹ 6.7 Hz, 2H), 3.67 (s, 3H), 4.45 (brs, 1H), 4.46 (t, J = 6.7 Hz, 1H), 5.04 (s, 2H), 6.49-6.53 (m, 2H), 6.80-6.97 (m, 4H), 7.27-7.45 (m, 7H). HPLC analysis: 95 % ee, Chiralcel AS-H (hexane/iPrOH = 85/15, 1.0 mL/min), $t_{r-minor} = 24.2min$, $t_{r-major} = 17.6 min$. [α]_D²⁰ = +1.7 (*c* 0.65, CHCl₃).

methyl 3-(3-methoxyphenyl)-3-(phenylamino)propanoate (80)

White solid, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.80-2.83 (m, 2H), 3.66 (s, 3H), 3.78 (s, 3H), 4.54 (s, 1H), 4.80-4.84 (m, 1H), 6.57-6.60 (m, 2H), 6.66-6.71 (m, 1H), 6.78-6.81 (m, 1H), 6.94-6.99 (m, 2H), 7.09-7.14 (m, 2H),

7.22-7.28 (m, 1H). HPLC analysis: 92 % ee, Chiralcel AD-H (hexane/iPrOH = 90/10, 1.0 mL/min), $t_{r-minor} = 9.7 \text{ min}$, $t_{r-major} = 9.0 \text{ min}$. ESI-HR MS exact mass calcd. for $(C_{17}H_{20}NO_3)^+$ requires m/z 286.1438, found m/z 286.1438.

NН

methyl 3-(4-methoxyphenylamino)-4-phenylbutanoate (8p) Colorless oil, 96 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.41-2.55 (m, 2H), 2.84 (dd, J_1 = 7.16 Hz, J_2 = 13.6 Hz, 1H), 2.96 (dd, J_1 = 5.12 Hz, J_2 = 13.6 Hz, 1H), 3.56 (brs, 1H), 3.65 (s, 3H), 3.75 (m, 3H), 4.04 (dd, J_1 = 6.03 Hz, J_2 = 12.2 Hz, 1H), 6.50 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 7.17-7.33 (m, 5H). HPLC analysis: 45 % ee, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor}$ = 14.9 min, $t_{r-major}$ = 16.8 min.

 $\begin{array}{l} \text{Bn}, \\ \text{MH} & 0 \\ \text{$

ethyl 3-(4-methoxyphenylamino)-2,3-diphenylpropanoate(8r)

NH O NH O

White solid, 97 % yield. ¹H NMR (300 MHz, CDCl₃): δ 0.96 (t, J= 7.1 Hz, 3H), 3.64-3.67 (m, 4H), 3.83-3.91 (m, 3H), 4.86 (d, J= 10.0Hz, 1H), 6.34 (d, J= 8.5 Hz, 2H), 6.58 (d, J= 8.9 Hz, 2H), 7.24-7.46 (m, 6H), 7.48-7.49 (m, 4H). HPLC analysis: 34 % ee, 21: 1 dr, Chiralcel AD-H (hexane/iPrOH =

85/15, 1.0 mL/min), $t_{r-minor} = 14.9 \text{ min}$, $t_{r-major} = 9.5 \text{ min}$. [α]_D²⁰ = -21.0 (*c* 0.48, CHCl₃).

methyl 2-((4-methoxyphenylamino)(phenyl)methyl) pent-4-enoate (8s) Colorless oil, 90 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.22-2.29 (m, 1H), 2.43-2.53 (m, 1H), 2.82-2.93 (m, 1H), 3.56-3.59 (m, 3H), 3.68-3.69 (m, 3H), 4.52 (d, J= 6.9 Hz, 1.39H), 4.59 (d, J= 5.9 Hz, 0.43H), 5.01-5.05 (m, 1.5H), 5.08-5.10 (m, 0.5H), 5.68-5.77 (m, 1H), 6.48- 6.52 (m, 2H), 6.66-6.70 (m,

2H), 7.22-7.32 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 31.9, 34.4, 51.5, 51.6, 52.2, 52.6, 55.6, 59.8, 60.0, 114.6, 114.7, 114.9, 117.0, 117.4, 126.6, 126.9, 127.3, 127.4, 128.4, 128.5, 134.7, 135.3, 140.7, 140.9, 141.1, 141.3, 151.9, 152.2, 173.5, 174.4. HPLC analysis: 90 % ee, 3.2: 1 dr, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 11.1 \text{ min}$, $t_{r-major} = 10.5 \text{ min}$. [α]_D²⁰ = +9.8 (*c* 1.24, CHCl₃). ESI-HR MS exact mass calcd. for (C₂₀H₂₃NNaO₃)⁺ requires m/z 348.1570, found m/z 348.1573.

methyl 2-hydroxy-3-(4-methoxyphenylamino)-3-phenyl

propanoate

White solid, 82 % yield (two steps). ¹H NMR (300 MHz, CDCl₃): δ 1.29 (t, J = 7.1 Hz, 3H), 3.44 (brs, 2H), 3.68 (s, 3H), 4.24 (q, J = 7.1

Hz, 2H), 4.47 (d, J = 2.7 Hz, 1H), 4.85 (d, J = 2.7 Hz, 1H), 6.52-6.71 (m, 4H), 7.22-7.39 (m, 5H). HPLC analysis: 90 % ee, 91:9 dr, Chiralcel AD-H (hexane/iPrOH = 90/10, 1.0 mL/min), t = 20.4, 27.7, 28.8, 46.7 min. $[\alpha]_D^{20} = -1.0$ (*c* 0.72, CHCl₃).

methyl 1-(4-methoxyphenylamino)-2,3-dihydro-1H- indene-2carboxylate (8u)

White solid, 98 % yield. ¹H NMR (300 MHz, CDCl₃): δ 3.12 (dd, J_I = 8.4 Hz, J_2 = 16.3 Hz, 1H), 3.40-3.46 (m, 1H), 3.48 (s, 3H), 3.62-3.69 (m, 1H), 3.76 (s, 3H), 3.82 (s, 1H), 5.30 (d, J = 7.5 Hz, 1H), 6.69-6.81 (m, 4H), 7.21-7.31(m, 4H). HPLC analysis: 95 % ee, > 99: 1 dr, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor}$ = 14.4 min, $t_{r-major}$ = 29.0 min. [α]_D²⁰ = -28.5 (*c* 1.06, CHCl₃).

Me methyl 5-bromo-1-(4-methoxyphenylamino)-2,3-dihydro-1H-indene-2-carboxylate (8v)

^{Br} Colorless oil, 95 % yield. ¹H NMR (300 MHz, CDCl₃): δ 3.10 (dd, J_1 = 8.4 Hz, J_2 = 16.6 Hz, 1H),3.39 (dd, J_1 = 5.8 Hz, J_2 = 16.6 Hz, 1H), 3.48 (s, 3H), 3.62-3.69 (m, 1H), 3.76 (s, 3H), 3.82 (s, 1H), 5.22 (d, J = 7.5 Hz, 1H), 6.67-6.81 (m, 4H), 7.15 (d, J = 8.06 Hz, 1H), 7.32 (d, J = 8.07 Hz, 1H), 7.39 (s, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 33.5, 48.2, 51.5, 55.6, 61.2, 114.7, 115.2, 122.1, 125.8, 127.9, 130.2, 140.9, 141.8, 143.2, 152.5, 173.1. HPLC analysis: 96 % ee, >99:1 dr, Chiralcel AD-H (hexane/iPrOH = 85/15, 1.0 mL/min), $t_{r-minor}$ = 8.5 min, $t_{r-major}$ = 14.2 min. [α]_D²⁰ = +7.7 (*c* 1.06, CHCl₃). ESI-HR MS exact mass calcd. for (C₁₈H₁₉BrNO₃)⁺ requires m/z 376.0543, found m/z 376.0546.

Colorless oil, 95 % yield. ¹H NMR (300 MHz, CDCl₃): δ 2.06-2.23 (m,

HN

CO₂Et

2H), 2.74-2.85 (m, 1H), 2.90-3.06 (m, 2H), 3.63 (s, 3H), 3.71-3.77 (m, 4H), 4.96 (d, J = 4.4 Hz, 1H), 6.70-6.81 (m, 4H), 7.08-7.26 (m, 4H). HPLC analysis: 92 % ee, >99:1 dr, Chiralcel AD-H (hexane/iPrOH = 95/5, 1.0 mL/min), $t_{r-minor} = 12.1$ min, $t_{r-major} = 15.6$ min. $[\alpha]_D^{20} = +128.0$ (*c* 0.14, CHCl₃).

OMe (1*R*,2*R*)-ethyl 1-(4-methoxyphenylamino)-1,2,3,4-tetrahydronaphthalene -2-carboxylate (8x)

Colorless oil, 98 % yield. ¹H NMR (300 MHz, CDCl₃): δ 1.18 (t, J= 7.1 Hz, 3H), 2.02-2.20 (m, 2H), 2.71-3.0 (m, 3H), 3.68(s, 1H), 3.74 (s, 3H), 3.95-4.14 (m, 2H), 4.93 (d, J= 4.4 Hz, 1H), 6.70-6.77 (m, 4H), 7.06-7.24 (m, 4H). ¹³C NMR (75 MHz, CDCl₃): δ 14.1, 21.0, 27.7, 44.7, 54.6, 55.6, 60.4, 114.6, 115.6, 126.1, 127.1, 128.2, 128.8, 135.1, 137.7, 141.7, 152.3, 173.2. HPLC analysis: 90 % ee, >99:1 dr, Chiralcel AD-H (hexane/iPrOH = 70/30, 1.0 mL/min), $t_{r-minor} = 5.4$ min, $t_{r-major} = 6.5$ min. $[\alpha]_D^{20} = +204.0$ (*c* 0.226, CHCl₃). ESI-HR MS exact mass calcd. for $(C_{20}H_{24}NO_3)^+$ (M+H⁺) requires m/z 326.1751, found m/z 348.1559.

4. Preparation and Characterization of compound 9, 10 and 11

4.1 Synthesis of chiral 3-aminoindan-1-one derivative 9

The chiral product **80** (0.95 g, 3.33 mmol) obtained above was hydrolyzed by LiOH (2 eq.) in THF/MeOH/H₂O (2/2/1) at room temperature. The mixture was adjusted to pH \sim 3-4 with 3N HCl, and extracted with DCM (20 mL \times 3). The organic phase was washed with brine and

dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure and the acid was subjected to the next step without further purification.

The acid was treated with PPA (20 mL) at 110 °C for 0.5 hour and the reaction mixture was poured into ice water (50 mL) and then neutralized with K_2CO_3 to pH = 8. Extracted of the mixture with EtOAc (2×60 mL) followed by chromatography (PET: EA = 6: 1) afforded 5-methoxy-3-(phenylamino)-2,3-dihydro-1H-inden-1-one **9** (0.48 g, 57 %) as a solid.

5-methoxy-3-(phenylamino)-2,3-dihydro-1H-inden-1-one (9)

White solid, 57 % yield (two steps). ¹H NMR (300 MHz, CDCl₃): δ 2.45 (dd, $J_1 = 3.2$ Hz, $J_2 = 18.7$ Hz, 1H), 3.10 (dd, $J_1 = 6.8$ Hz, $J_2 = 18.7$ Hz, 1H), 3.84 (s, 3H), 4.21 (d, J = 5.7 Hz, 1H), 5.05 (s, 1H), 6.70 (d, J = 7.7 Hz, 2H), 6.77 (t, J

= 7.3 Hz, 1H), 6.96 (dd, J_1 = 2.1 Hz, J_2 = 8.5 Hz, 1H), 7.10 (d, J = 1.9 Hz, 1H), 7.18-7.26 (m, 2H), 7.63 (d, J = 8.5Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 45.3, 51.2, 55.5, 108.7, 113.2, 116.9, 118.1, 124.8, 129.3, 129.8, 146.8, 157.5, 165.4, 201.8. HPLC analysis: 90 % ee, Chiralcel AD-H (hexane/iPrOH = 70/30, 1.0 mL/min), $t_{\text{r-minor}}$ = 9.4 min, $t_{\text{r-major}}$ = 8.5 min. $[\alpha]_D^{20}$ = -222.1 (*c* 1.4, CHCl₃). ESI-HR MS exact mass calcd. for (C₁₆H₁₅NNaO₂)⁺ requires m/z 276.0995, found m/z 276.0997.

4.2 Synthesis of compounds 11^[7] and 12

Na (100 mg, 4.34 mmol) was dissolved in dry EtOH (10 mL). Compound **8x** (150 mg) was added to the solution and the mixture was refluxed for 5 minutes. The reaction mixture was adjusted to pH = 8. Then EtOH was removed, the residue was extracted with EA. The organic layer was washed with brine, dried over anhydrous Na₂SO₄. The solvent was removed and the residue was purified on FC (PET: EA = 20:1) to give the diastereoisomer mixture (**8x:10** = 1:5).

Data for diastereoisomer mixture: Colorless oil. ¹H NMR (300 MHz, CDCl₃): δ 1.16-1.37(m, 8H), 2.10-2.12 (m, 3H), 2.85-2.93 (m, 4H), 3.70 (brs, 1H), 3.74 (s, 3H), 3.75 (s, 0.9H), 4.03-4.15(m, 2.6H), 4.91 (d, J= 7.1 Hz, 1H), 4.94 (d, J= 5.2 Hz, 0.2H), 6.62-6.79 (m, 5H), 7.11-7.43 (m, 5.3H).

To a solution of compound 8x (0.69 g, 2.12 mmol) in MeCN/H₂O (4:1, 25 mL) was added ceric ammonium nitrate (4.65 g, 8.48 mmol) at room temperature, and the reaction mixture

was stirred for 1 hour. The reaction was quenched with 10% aqueous NaOH and adjusted to pH = 9 to give a mass. The mass was filtered through a pad of celite, washed with DCM. The solution was extracted with DCM. The organic phase was washed with brine and dried over anhydrous Na₂SO₄. The solvent was removed and the residue was purified on FC (PET: EA=2:1 to DCM: MeOH=30:1) to give a brown oil, which was dissolved in EA/Et₂O= 1:2. Hydrogen Chloride was bubbled in the solution for 5 minutes. White solid precipitated. The solid was collected by filtration and washed with Et₂O, dried under reduced pressure to give the product **11** (0.41 g, 76 % yield).

 $\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \label{eq:heat} \mbox{MH2}, \mbox{CO}_2 \mbox{Et} \end{array} & \mbox{(1R,2R)-ethyl} & \mbox{1-amino-1,2,3,4-tetrahydronaphthalene-2-carboxylate} \\ \mbox{hydrochloride (11): white solid, 76 % yield. $^1 \mbox{H}$ NMR (300 \mbox{ MHz, CDCl}_3): δ \\ \mbox{1.20 (t, $J=7.1$ Hz, 3H), $2.09-2.14 (m, 2H), $2.79-2.84 (m, 2H), $3.20-3.23 (m, 1H), $4.10-4.17$ (m, 2H), $4.65 (s, 1H), $7.15-7.25 (m, 3H), $7.54 (d, $J=6.8$ Hz, 1H), $8.58 (s, 3H). $^{13} \mbox{C}$ NMR (75$ \mbox{MHz, CDCl}_3): δ \\ \mbox{13.9, $20.1, $27.1, $41.6, $48.7, $60.9, $126.0, $128.5, $129.1, $129.3, $131.8, $136.5, $171.5. $[\alpha]_D^{20} = +35.0 (c \ 0.15, $EtOH). \end{array}$

References:

1. (*a*) M. P. Sibi, J. X. Chen and G. R. Cook, *Tetrahedron Lett.* 1999, **40**, 3301; (*b*) S. Rajaram and M. S. Sigman, *Org. Lett.* 2005, **7**, 5473.

2. H. J. Zheng, W. B. Chen, Z. J. Wu, J. G. Deng, W. C. Yuan, W. Q. Lin and X. M. Zhang, *Chem. Eur. J.* 2008, **14**, 9864.

- 3. T. Sheradsky and D. Zbaida. J. Heterocyclic Chem., 1983, 20, 245.
- 4. Y. Jiang, X. Chen, Y. S. Zheng, Z. Y. Xue, C. Shu, W. C. Yuan and X. M. Zhang, *Angew. Chem. Int. Ed.* 2011, **50**, 7304.
- 5. X. J. Wu, Y. Li, C. Wang, L. Zhou, X. X. Lu and J. Sun, Chem. Eur. J. 2011, 17, 2846.

G. F. Busscher, L. Lefort, J. G. O. Cremers, M. Mottinelli, R. W. Wiertz, B. de Lange, Y. Okamura, Y. Yusa, K. Matsumura, H. Shimizu, J. G. De Vries and A. H. M. De Vries. *Tetrahedron: Asymmetry* 2010, 21, 1709.

7. E. Forró and F. Fülöp. Chem. Eur. J. 2006, 12, 2587.

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

S29

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

S33

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

S42

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.131	18195109	1174666	96.756	97.483
2	11.741	610039	30333	3.244	2.517
Total		18805148	1204998	100.000	100.000

S44

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	10.922	17690920	964645	96.402	96.829	
2	12.919	660271	31596	3.598	3.171	
Total		18351191	996241	100.000	100.000	

1 Det.A Ch1 / 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	11.945	13693904	726641	50.071	55.803
2	14.268	13654948	575504	49.929	44.197
Total		27348852	1302145	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.241	54646771	2515675	95.489	95.949
2	14.790	2581426	106220	4.511	4.051
Total	and the second se	57228197	2621896	100.000	100.000

]	Detector A (Ch1 254nm				
	Peak#	Ret. Time	Area	Height	Area %	Height %
	1	13.381	47504282	2172382	95.830	96.418
	2	16.027	2067052	80716	4.170	3.582
	Total		49571334	2253097	100.000	100.000

	0.0 2.5	 5.0	7.5		10.0	
				-		
1	Det.A Ch1 / 254nm					

min

Detector A C Peak#	Ch1 254nm Ret. Time	Area	Height	Area %	Height %
1	6.329	14230125	1605661	98.853	99.042
2	7.260	165142	15532	1.147	0.958
Total		14395268	1621193	100.000	100.000

S48

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.317	9498378	369620	49.915	54.044
2	19.818	9530698	314303	50.085	45.956
Total		19029076	683923	100.000	100.000

Detector A	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.448	23978800	914605	96.689	97.165
2	20.010	821076	26686	3.311	2.835
Total		24799876	941291	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	22.035	55402128	1616565	49.584	55.764
2	26.711	56332846	1282375	50.416	44.236
Total		111734974	2898940	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.263	11555737	379991	93.721	94.790
2	24.610	774179	20886	6.279	5.210
Total		12329917	400877	100.000	100.000

Detector A Ch1 254nm Peak# Ret. Time Area Height Area % Height % 21.211 1 79207018 1170981 95.993 96.507 2 42381 23.710 3306495 4.007 3.493 Total 82513513 1213362 100.000 100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.364	33587507	737772	97.229	97.721
2	16.783	957153	17204	2.771	2.279
Total		34544660	754976	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	34.714	67921423	1239430	97.091	97.232	
2	37.055	2035347	35283	2.909	2.768	
Total		69956771	1274713	100.000	100.000	

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.731	10339848	185936	47.644	53.603
2	22.528	11362387	160939	52.356	46.397
Total		21702235	346875	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.053	38749496	619084	97.032	96.450
2	22.248	1185230	22787	2.968	3.550
Total		39934726	641871	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.042	10981541	448959	48.088	51.174
2	17.629	11854866	428359	51.912	48.826
Total		22836406	877317	100.000	100.000

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.237	17666891	703269	89.733	90.996
2	17.878	2021493	69585	10.267	9.004
Total		19688384	772854	100.000	100.000

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	24.176	18643982	502494	49.981	51.005
2	25.685	18657890	482684	50.019	48.995
Total		37301872	985179	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.787	2605458	75855	2.278	2.709
2	25.121	111751808	2724234	97.722	97.291
Total		114357266	2800089	100.000	100.000

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.620	46369885	554169	97.557	98.719
2	24.262	1161231	7190	2.443	1.281
Total		47531116	561359	100.000	100.000

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.051	12537403	989712	49.640	51.650
2	9.687	12718998	926494	50.360	48.350
Total		25256400	1916206	100.000	100.000

1 Det.A Ch1 / 254nm	Det.A Ch1 / 2	54nm
---------------------	---------------	------

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.075	14478062	1160076	95.866	96.076
2	9.725	624328	47380	4.134	3.924
Total		15102390	1207455	100.000	100.000

.

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.964	14146139	645790	49.875	53.570
2	16.947	14217008	559710	50.125	46.430
Total		28363147	1205500	100.000	100.000

1 Det.A Ch1 / 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.966	4843846	224833	27.375	29.907
2	16.852	12850326	526932	72.625	70.093
Total		17694171	751766	100.000	100.000

Detector A C	Ch1 220nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.949	15311394	761973	49.735	55.279
2	9.027	15474786	616441	50.265	44.721
Total		30786180	1378414	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.041	18321042	940843	90.984	92.467
2	9.244	1815527	76644	9.016	7.533
Total		20136570	1017487	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.469	6602585	442734	49.901	61.454
2	14.536	6628656	277696	50.099	38.546
Total		13231241	720431	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.561	3064025	199320	67.130	76.671
2	14.916	1500269	60649	32.870	23.329
Total		4564294	259969	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.623	8441302	517930	30.937	38.761
2	11.207	8496396	467343	31.139	34.976
3	13.822	5204214	213155	19.073	15.952
4	20.409	5143469	137770	18.851	10.311
Total		27285381	1336199	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.557	37425737	2070945	66.912	74.156
2	11.166	2035919	114192	3.640	4.089
3	13.727	11691153	480718	20.902	17.213
4	20.111	4779988	126845	8.546	4.542
Total		55932797	2792700	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.392	2377050	73537	4.526	7.825
2	29.308	2098982	60233	3.996	6.409
3	30.077	24333273	502886	46.329	53.509
4	47.872	23713760	303167	45.149	32.258
Total		52523065	939823	100.000	100.000

1	Det.A Ch1	/ 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	20.455	1332984	42972	3.194	4.776
2	27.702	2375428	65360	5.691	7.265
3	28.820	36635480	773796	87.777	86.008
4	46.977	1392986	17547	3.338	1.950
Total		41736879	899675	100.000	100.000

Detector A (Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.340	6237457	316769	49.932	67.264
2	28.971	6254440	154163	50.068	32.736
Total		12491898	470932	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.430	567901	28758	2.711	5.449
2	29.072	20383380	499003	97.289	94.551
Total		20951281	527761	100.000	100.000

etector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.836	6406080	514073	50.002	62.208
2	14.225	6405547	312300	49.998	37.792
Total		12811627	826373	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.852	1081455	86593	2.176	3.650
2	14.202	48608686	2285823	97.824	96.350
Total		49690141	2372416	100.000	100.000

S65

Peak#	Ret. Time	Area	Height	Area %	Height %
1	12.163	6003646	316749	50.211	55.71
2	15.997	5953144	251813	49.789	44.289
Total		11956790	568562	100.000	100.000

1 Det.A Ch1 / 254nm

Detector A (Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	12.105	3955889	217123	4.072	8.185			
2	15.668	93198282	2435488	95.928	91.815			
Total		97154170	2652611	100.000	100.000			

Detector A Ch1 254nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.933	10223322	844448	49.784	57.544
2	11.266	10311844	623044	50.216	42.456
Total		20535167	1467492	100.000	100.000

Detector A C	Ch1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.907	15225734	1263897	59.108	66.892
2	11.249	10533580	625561	40.892	33.108
Total		25759314	1889457	100.000	100.000

etector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	5.442	4350542	522356	49.906	55.342		
2	6.620	4366869	421507	50.094	44.658		
Total		8717410	943863	100.000	100.000		

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.437	1332162	161639	5.283	6.616
2	6.571	23885560	2281583	94.717	93.384
Total		25217722	2443222	100.000	100.000

Detector A (Detector A Ch1 254nm							
Peak#	Ret. Time	Area	Height	Area %	Height %			
1	8.415	20497554	1539177	49.887	52.563			
2	9.330	20590186	1389089	50.113	47.437			
Total		41087741	2928266	100.000	100.000			

Detector A Ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.526	19254032	1507841	94.863	95.082
2	9.486	1042640	77999	5.137	4.918
Total		20296671	1585840	100.000	100.000