Supporting Information

Directed Studies Towards The Total Synthesis of (+)-13-Deoxytedanolide: Simple and Convenient Synthesis of C8-C16 fragment

Sébastien Meiries, Alexandra Bartoli, Mélanie Decostanzi, Jean-Luc Parrain* and Laurent Commeiras*

Aix Marseille Université, CNRS, iSm2 UMR 7313, 13397 Marseille cedex 20, France
E-mail: jl.parrain@univ-amu.fr; laurent.commeiras@univ-amu.fr

Table of Contents

S2 General experimental details
S3-S32 Experimental section and characterisation data, 1H NMR and 13C NMR spectra for each compound
Supporting Information

Usual procedures

All reagents were obtained from commercial sources and used as supplied unless otherwise stated. Anhydrous THF, Et$_2$O, Toluene and CH$_2$Cl$_2$ were obtained from a MBraun® SPS-800 solvent purification system. Light petroleum refers to the fraction of petrol ether that was distilled between 40 °C and 65 °C.

The reactions were magnetically stirred and monitored by TLC, which were performed on Merck® 60F254 plates and achieved under a 254 nm UV light, visualized with an aqueous solution of potassium permanganate or an ethanolic solution of molybdophosphoric acid, followed by treatment with a heat gun.

Flash chromatography was performed with Merck® Kieselgel 60 (230-400) mesh silica gel.

Physical data and spectroscopic measurements

NMR data were recorded on a Bruker Avance 300 and 400 spectrometer in C$_6$D$_6$ or CDCl$_3$ and chemical shifts (δ) were given in ppm relative to the residual non-deuterated solvent signal for 1H NMR (C$_6$D$_6$: 7.16 ppm), (CDCl$_3$: 7.26 ppm) and relative to the deuterated solvent signal for 13C NMR (C$_6$D$_6$: 128.06 ppm), (CDCl$_3$: 77.16 ppm); coupling constants (J) are in Hertz, and the classical abbreviations are used to describe the signal multiplicity (s = singlet, d = doublet, t = triplet, sept = septet, m = multiplet, dd = doublet of doublets, dt = doublets of triplets, br = broad, etc.). NMR Spectra were assigned using information ascertained from DEPT, HMQC and NOE experiments.

High resolution mass spectra (HRMS) have been performed using a mass spectrometer equipped with pneumatically assisted atmospheric pressure ionization. The sample was ionized in positive mode electrospray in the following conditions: electrospray voltage (ISV): 5500 V; orifice voltage (OR): 70 V; nebulising gas flow pressure (air): 0.6 psi. The mass spectrum was obtained using a time of flight analyzer (TOF). The measure was realized in triplicate. The sample was dissolved in methanol (500 µL) then diluted (dilution factor 4/10000) in a methanolic solution of ammonium acetate (3 mM). The sample solution was infused in the ionization source at a 5 µL/min flow rate.
Supporting Information

\[\text{\textbf{S 3}} \]

\[\text{\textbf{O}} \]

\[\text{\textbf{N}} \]

\[\text{\textbf{O}} \]

\[\text{\textbf{Bn}} \]

\[(\text{\textbf{S}})-14 \]

\[\text{\textbf{O}} \]

\[\text{\textbf{N}} \]

\[\text{\textbf{O}} \]

\[\text{\textbf{Bn}} \]

\[(\text{\textbf{R}})-14 \]

\[\text{\textbf{H NMR}} \] (300 MHz, CDCl\textsubscript{3}) \(\delta \)

1.18 (3H, d, \(J = 6.8 \) Hz, CH\textsubscript{3}), 2.19-2.28 (1H, m, CH\textsubscript{2}), 2.48-2.57 (1H, m, CH\textsubscript{2}), 2.69 (1H, dd, \(J = 13.4 \) and 9.8 Hz, CH2), 3.27 (1H, dd, \(J = 13.4 \) and 3.2 Hz, CH\textsubscript{2}), 3.36 (1H, m, \(J = 6.8 \) Hz, CH), 4.11-4.21 (2H, m, CH\textsubscript{2}), 4.64-4.71 (1H, m, CH\textsubscript{3}), 5.04-5.13 (2H, m, CH\textsubscript{2}), 5.76-5.89 (m, 1H, CH), 7.20-7.35 (5H, m, CH\textsubscript{Ar}); \[\text{\textbf{13C NMR}} \] (CDCl\textsubscript{3}, 75 MHz) \(\delta \)

16.5 (CH\textsubscript{3}), 37.2 (CH), 38.0 (CH\textsubscript{2}), 38.1 (CH\textsubscript{2}), 55.4 (CH), 66.1 (CH\textsubscript{2}), 117.3 (CH\textsubscript{2}), 127.4 (CH\textsubscript{Ar}), 129.0 (2 x CH\textsubscript{Ar}), 129.5 (2 x CH\textsubscript{Ar}), 135.4 (CH), 135.5 (C\textsubscript{Ar}), 153.2 (C), 176.6 (C); \[(\text{\textbf{S}})-14 \] [\(\alpha \)\textsubscript{\textbf{D}}] = +38.0 (c 1, CHCl\textsubscript{3}); \[(\text{\textbf{R}})-14 \] [\(\alpha \)\textsubscript{\textbf{D}}] = -39.0 (c 1, CHCl\textsubscript{3})
Supporting Information
Supporting Information

\[\text{OH} \quad \text{(S)-15} \quad \text{OH} \quad \text{(R)-15} \]

\(^1\text{H NMR}\) (200 MHz, CDCl\(_3\)) \(\delta\) 0.92 (3H, d, \(J = 6.7\) Hz, CH\(_3\)), 1.37 (1H, br s, OH), 1.65-1.82 (1H, m, CH), 1.87-2.01 (1H, m, CH\(_2\)), 2.11-2.25 (1H, m, CH\(_2\)), 3.40-3.55 (2H, m, CH\(_2\)), 4.99-5.09 (2H, m, CH\(_2\)), 5.71-5.92 (m, 1H, CH), \(^{13}\text{C NMR}\) (50 MHz, CDCl\(_3\)) \(\delta\) 16.4 (CH\(_3\)), 35.6 (CH), 37.9 (CH\(_2\)), 67.7 (CH\(_2\)), 116.1 (CH\(_2\)), 137.1 (CH); (R)-15 \([\alpha]^{19}_D = +4.3\) (c 1, CHCl\(_3\)); (S)-15 \([\alpha]^{24}_D = -2.6\) (c 1, CHCl\(_3\))
Supporting Information

(H)-12 (R)-12

\[\begin{align*}
^{1}H \text{ NMR} \ (400 \text{ MHz, CDCl}_{3}) & \ \delta \ 1.07 \ (3H, d, J = 6.8 \text{ Hz, CH}_{3}), \ 2.98-3.07 \ (1H, m, CH), \ 3.85 \\
& \ (1H, dd, J = 8.8 \text{ and } 6.8 \text{ Hz, CH}_{2}), \ 4.37 \ (1H, dd, J = 9.8 \text{ and } 8.8 \text{ Hz, CH}_{2}), \ 4.93 \ (1H, t, J = 2.5 \\
& \text{ Hz, CH}), \ 6.29 \ (1H, t, J = 2.5 \text{ Hz, CH}); \ ^{13}C \text{ NMR} \ (50 \text{ MHz, CDCl}_{3}) \ \delta \ 20.6 \ (\text{CH}_{3}), \ 36.5 \ (\text{CH}), \\
& \ 76.7 \ (\text{CH}_{2}), \ 106.3 \ (\text{CH}), \ 145.2 \ (\text{CH}).
\end{align*} \]
Supporting Information

\[\alpha^2_d + 21.4, \text{ (c 1.0, CHCl}_3) \]; \textbf{1H NMR} (400 MHz, CDCl\textsubscript{3}) \(\delta \) 0.84-0.90 (15H, m, 3 x CH\textsubscript{3} and 3 x CH\textsubscript{2}), 1.02 (3H, d, \(J = 6.8 \text{ Hz, CH}_3 \)), 1.24-1.53 (12H, m, 6 x CH\textsubscript{2}), 2.34-2.44 (1H, m, CH\textsubscript{2}), 3.38-3.44 (1H, m, CH\textsubscript{2}), 3.47-3.53 (1H, m, CH\textsubscript{2}), 5.79 (1H, dd, \(J = 19.0 \text{ and 7.0 Hz, }^3J_{\text{Sn-H}} = 70 \text{ Hz, CH} \)), 5.99 (1H, br d, \(J = 19.0 \text{ Hz, }^2J_{\text{Sn-H}} = 18 \text{ Hz, CH} \)); \textbf{13C NMR} (75 MHz, CDCl\textsubscript{3}) \(\delta \) 9.5 (3 x CH\textsubscript{2}, \(^1J_{\text{Sn-C}} = 334 \text{ Hz} \)), 13.4 (3 x CH\textsubscript{3}), 16.1 (CH\textsubscript{3}), 27.3 (3 x CH\textsubscript{2}, \(^3J_{\text{Sn-C}} = 54 \text{ Hz} \)), 29.2 (3 x CH\textsubscript{2}, \(^2J_{\text{Sn-C}} = 21 \text{ Hz} \)), 44.5 (CH, \(^3J_{\text{Sn-C}} = 57 \text{ Hz} \)), 66.9 (CH\textsubscript{2}), 129.5 (C\textsubscript{3}, CH, \(^2J_{\text{Sn-C}} = 23 \text{ Hz} \)), 151.2 (CH); \textbf{IR} (thin film) \(\nu_{\text{max}} = 3325, 2956, 2923, 2871, 2852, 1597, 1455, 1376, 1072, 1031, 990 \text{ cm}^{-1} \); \textbf{LRMS} \(m/z \) (ESI) 399.(M+Na)+; \textbf{HRMS} \(m/z \) (ESI) calcd for C\textsubscript{17}H\textsubscript{37}OSn [M+H]+: 377.1860, found 377.1861.
[α]_{D}^{21} = -31.8 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 0.84-0.98 (18H, 4 x CH₃ and 3 x CH₂), 1.16-1.56 (12H, m, 6 x CH₂), 1.88 (3H, d, J = 1.9 Hz, ³J_{Sn-H} = 44Hz, CH₃), 2.77-2.99 (1H, m, CH), 3.30-3.36 (1H, m, CH₂), 3.43-3.50 (1H, m, CH₂), 5.23 (1H, dq, J = 9.0 and 1.9 Hz, ³J_{Sn-H} = 70 Hz, CH); ¹³C NMR (75 MHz, CDCl₃) δ 9.3 (3 x CH₂, ¹J_{Sn-C} = 322 Hz), 13.8 (3 x CH₃), 16.9 (CH₃), 19.7 (CH₃), 27.5 (C9, 3 x CH₂, ³J_{Sn-C} = 54 Hz), 29.3 (3 x CH₂, ²J_{Sn-C} = 20 Hz), 35.3 (CH₃, ³J_{Sn-C} = 53 Hz), 67.7 (CH₂), 141.2 (C), 143.1 (CH, ²J_{Sn-C} = 24 Hz); IR (thin film) ν max = 3330, 2955, 2924, 2871, 2850, 1456, 1377, 1071, 1030, 970 cm⁻¹; HRMS (ESI) m/z calcd for C₁₈H₃₉OSn [M+H]⁺: 391.2017, found 391.2017.
Supporting Information
$[\alpha]^{25}_D$ +23.1, (c 1.0, CHCl$_3$); 1H NMR (300 MHz, CDCl$_3$) δ 1.00 (3H, d, $J = 6.8$ Hz, CH$_3$), 1.88-1.92 (1H, m, OH), 2.33-2.46 (1H, m, CH), 3.40-3.53 (2H, m, CH$_2$), 6.12 (1H, d, $J = 14.5$ Hz, CH), 6.45 (1H, dd, $J = 14.5$ and 7.9 Hz, CH); 13C NMR (75 MHz, CDCl$_3$) δ 15.6 (CH$_3$), 43.4 (CH), 66.5 (CH$_2$), 76.2 (CH), 148.6 (CH).
Supporting Information

\[
\begin{align*}
\alpha & = 25^\circ + 20.8, (c \ 1.0, \ CHCl_3); \\
^1H \text{ NMR} & (400 MHz, CDCl}_3) \ \delta 0.05 (6H, s, 2 \times CH_3), 0.90 (9H, s, 3 \times CH_3), 1.01 (3H, d, J = 6.8 Hz, CH_3), 2.33-2.40 (1H, m, CH), 3.45 (1H, dd, J = 9.8 and 6.4 Hz, CH_2), 3.48 (1H, dd, J = 9.8 and 6.4 Hz, CH_2), 6.06 (1H, br dd, J = 14.6 Hz, CH), 6.49 (1H, dd, J = 14.6 and 6.5 Hz, CH); \\
^{13}C \text{ NMR} & (100 MHz, CDCl}_3) \ \delta -5.2 (2 \times CH_3), 15.7 (CH_3), 18.4 (C), 26.0 (3 \times CH_3), 43.3 (CH), 67.0 (CH_2), 75.2 (CH), 149.2 (CH); \\
\text{IR} & \text{ (thin film)} \ \nu_{\text{max}} = 2955, 2928, 2856, 1605, 1471, 1386, 1361, 1252, 1187, 1088, 1024, 1006, 947 \text{ cm}^{-1}; \\
\text{LRMS} \ m/z & \text{ (ESI) 349 (M+Na)}^+; \ \text{HRMS} \ m/z \text{ (ESI) calcd for C}_{11}H_{24}OSi [M+H]^+: 327.0636, found 327.0640
\end{align*}
\]
Supporting Information

Chloroform

77.16
Supporting Information

\[\alpha \]_D^{25} = -31.3, (c 1.0, CHCl₃); \[^1^H\text{NMR}\] (400 MHz, CDCl₃) δ 0.95 (3H, d, J = 6.8 Hz, CH₃), 1.82-1.85 (1H, m, OH), 2.41 (3H, d, J = 1.5 Hz, CH₃), 2.57-2.68 (1H, m, CH), 3.36-3.51 (2H, m, CH₂), 5.96 (1H, br dq, J = 9.8, 1.5 Hz, CH); \[^{13}\text{C NMR}\] (100 MHz, CDCl₃) δ 16.4 (CH₃), 28.2 (CH₃), 38.6 (CH), 67.0 (CH₂), 95.6 (CH), 143.6 (CH); \[^{1}\text{RMS}\] (thin film) ν max = 3332, 2958, 2926, 2870, 1635, 1429, 1377, 1217, 1119, 1076, 1030, 996, cm⁻¹; \[^{1}\text{RMS}\] m/z (ESI) 249 (M+Na); \[^{1}\text{HRMS}\] m/z (ESI) calcd for C₆H₁₅NOI [M+NH₄]+: 244.0193, found 244.0185.
Supporting Information

1H NMR (400 MHz, CDCl₃) δ 1.21 (3H, d, J = 7.0 Hz, CH₃), 2.46 (3H, d, J = 1.5 Hz, CH₃), 3.23-3.31 (1H, m, CH), 6.06 (1H, br dq, J = 9.3, 1.5 Hz, CHF), 9.51 (1H, d, J = 1.7 Hz, CHF); 13C NMR (100 MHz, CDCl₃) δ 13.8 (CH₃), 28.4 (CH₃), 48.8 (CH), 67.0 (CH₂), 98.1 (CH), 136.6 (CH), 199.3 (CHO).
Supporting Information

Major diastereoisomer only: 1H NMR (400 MHz, CDCl$_3$) δ 0.05 (6H, s, 2 x CH$_3$), 0.89 (1H, s, 3 x CH$_3$), 1.00 (6H, d, $J = 6.8$ Hz, 2 x CH$_3$), 1.66 (1H, br s, OH), 2.29-2.36 (1H, m, CH), 2.39 (3H, d, $J = 1.5$ Hz, CH$_3$), 2.50-2.59 (1H, m, CH), 3.40 (1H, dd, $J = 9.8$ and 6.8 Hz, CH$_2$), 3.49 (1H, dd, $J = 9.8$ and 6.3 Hz, CH$_2$), 3.88 (1H, app br t, $J = 6.5$ Hz, CH), 5.45 (1H, br dd, $J = 15.6$ and 6.8 Hz, CH), 5.60 (1H, br dd, $J = 15.6$ and 6.3 Hz, CH), 5.99 (1H, br dq, $J = 9.8$ and 1.5 Hz, CH); 13C NMR (100 MHz, CDCl$_3$) δ -5.3 (2 x CH$_3$), 15.9 (CH$_3$), 16.5 (CH$_3$), 18.3 (C), 25.9 (3 x CH$_3$), 28.1 (CH$_3$), 39.0 (CH), 41.7 (CH), 67.9 (CH$_2$), 76.3 (CH), 94.6 (Cl), 129.8 (CH), 135.8 (CH), 142.9 (CH); IR (thin film) ν_{max} = 3419, 2958, 2930, 2858, 1638, 1473, 1388, 1257, 1089, 1009, 974 cm$^{-1}$; LRMS m/z (ESI) 447 (M+Na)$^+$; HRMS m/z (ESI) calcd for C$_{17}$H$_{37}$NO$_2$Si [M+NH$_4$]$^+$: 442.1633, found 442.1633.
Supporting Information

\[\alpha^{21}_D + 52.5 \ (c \ 1.0, \ CHCl_3); \]

\(^1H\) NMR (400 MHz, C\(_6\)D\(_6\)) \(\delta \)

- 0.00 (6H, s, 2 x CH\(_3\)),
- 0.82 (3H, d, \(J = 6.8 \) Hz, CH\(_3\)),
- 0.94 (9H, s, 3 x CH\(_3\)),
- 0.99 (3H, d, \(J = 7.0 \) Hz, CH\(_3\)),
- 2.12 (3H, br d, \(J = 1.5 \) Hz, CH\(_3\)),
- 2.22 (1H, app sept, \(J = 6.3 \) Hz, CH),
- 3.19 (1H, dq, \(J = 9.8 \) and 7.0 Hz, CH),
- 3.28 (2H, d, \(J = 6.0 \) Hz, CH\(_2\)),
- 6.06 (1H, br dd, \(J = 15.8 \) and 1.3 Hz, CH),
- 6.25 (1H, br dq, \(J = 9.8 \) and 1.5 Hz, CH),
- 6.90 (1H, dd, \(J = 15.8 \) and 7.3 Hz, CH);

\(^{13}C\) NMR (100 MHz, C\(_6\)D\(_6\)) \(\delta \)

- -5.3 (2 x CH\(_3\)),
- 15.7 (CH\(_3\)),
- 16.3 (CH\(_3\)),
- 18.5 (C),
- 26.1 (3 x CH\(_3\)),
- 27.9 (CH\(_3\)),
- 39.6 (CH),
- 47.2 (CH),
- 67.1 (CH\(_2\)),
- 96.1 (C),
- 127.5 (CH),
- 140.3 (CH),
- 149.8 (CH),
- 196.9 (C);

IR (thin film) \(\nu_{\text{max}} = 2955, 2927, 2854, 1697, 1673, 1626, 1471, 1459, 1253, 1189, 1129, 1097, 1084, 1029, 980 \text{ cm}^{-1} \);

LRMS m/z (ESI) 445 (M+Na)\(^+\);

HRMS m/z (ESI) calcd for C\(_{17}\)H\(_{32}\)O\(_2\)SiI \[M+H\]\(^+\):

423.1211, found 423.1211.
Supporting Information
Supporting Information

\[\text{[}\alpha\text{]}^{22}_{\text{D}} + 65.6, \ (c \ 1.0, \ \text{CHCl}_3); \]
\[^1\text{H} \text{NMR} \ (400 \text{ MHz, CDCl}_3) \ \delta \ 0.05 \ (6\text{H}, \text{s, } 2 \times \text{CH}_3), \ 0.87 \ (3\text{H}, \text{d, } J = 6.6 \text{ Hz, CH}_3), \ 0.90 \ (9\text{H}, \text{s, } 3 \times \text{CH}_3), \ 1.16 \ (3\text{H}, \text{d, } J = 6.8 \text{ Hz, CH}_3), \ 1.30-1.43 \ (1\text{H}, \text{m, CH}_2), \ 1.51-1.62 \ (1\text{H}, \text{m, CH}), \ 1.62-1.73 \ (1\text{H}, \text{m, CH}_2), \ 2.36-2.55 \ (2\text{H}, \text{m, CH}_2), \ 2.46 \ (3\text{H}, \text{d, } J = 1.5 \text{ Hz, CH}_3), \ 3.33-3.40 \ (1\text{H}, \text{m, CH}), \ 3.42 \ (2\text{H}, \text{d, } J = 5.9 \text{ Hz, CH}_2), \ 6.12 \ (1\text{H}, \text{dq, } J = 10.0 \text{ and } 1.5 \text{ Hz, CH}_3); \]
\[^{13}\text{C} \text{NMR} \ (100 \text{ MHz, CDCl}_3) \ \delta \ -5.2 \ (2 \times \text{CH}_3), \ 16.3 \ (\text{CH}_3), \ 16.8 \ (\text{CH}_3), \ 18.5 \ (\text{C}), \ 26.1 \ (3 \times \text{CH}_3), \ 27.4 \ (\text{CH}_2), \ 28.1 \ (\text{CH}_3), \ 35.4 \ (\text{CH}), \ 38.8 \ (\text{CH}_2), \ 48.7 \ (\text{CH}), \ 68.2 \ (\text{CH}_2), \ 96.1 \ (\text{C}), \ 139.9 \ (\text{CH}), \ 209.9 \ (\text{C}); \]
\(\text{IR (thin film)} \ \nu_{\text{max}} = 2955, \ 2929, \ 2883, \ 2856, \ 1716, \ 1472, \ 1462, \ 1434, \ 1252, \ 1117, \ 1091, \ 1037, \ 1028, \ 1005 \ \text{cm}^{-1}; \]
\(\text{LRMS} \ m/z \ (\text{ESI}) \ 447 \ (\text{M+Na})^+; \)
\(\text{HRMS} \ m/z \ (\text{ESI}) \ \text{calcd for C}_{17}\text{H}_{34}\text{O}_2\text{SiI} \ [\text{M+H}]^+: \) 425.1367, found 425.1367.
Supporting Information

\[
\text{[} \alpha \text{]}^{20}_{20} = -23.0, (c 1.0, \text{CHCl}_3); \quad \text{H NMR} \ (300 \text{ MHz}, \text{C}_6\text{D}_6) \quad \delta 0.07 (6\text{H}, \text{s}, 2 \times \text{CH}_3), 0.79 (3\text{H}, \text{d}, \text{J} = 6.9 \text{ Hz}, \text{CH}_3), 0.87 (3\text{H}, \text{d}, \text{J} = 6.7 \text{ Hz}, \text{CH}_3), 0.98 (9\text{H}, \text{s}, 3 \times \text{CH}_3), 1.19-1.45 (5\text{H}, \text{m}, 2 \times \text{CH}_2 \text{ and } \text{OH}), 1.51-1.61 (1\text{H}, \text{m}, \text{CH}), 2.12-2.24 (1\text{H}, \text{m}, \text{CH}), 2.17 (3\text{H}, \text{d}, \text{J} = 1.3 \text{ Hz}, \text{CH}_3), 3.05-3.11 (1\text{H}, \text{m}, \text{CH}), 3.33-3.42 (1\text{H}, \text{m}, \text{CH}_2), 6.16 (1\text{H}, \text{br dq}, \text{J} = 10.0 \text{ and } 1.3 \text{ Hz}, \text{CH}); \quad \text{C NMR} \ (75 \text{ MHz}, \text{C}_6\text{D}_6) \quad \delta -5.1 (2 \times \text{CH}_3), 16.8 (\text{CH}_3), 17.1 (\text{CH}_3), 18.6 (\text{C}), 26.3 (3 \times \text{CH}_3), 28.1 (\text{CH}_3), 29.7 (\text{CH}_2), 32.4 (\text{CH}_2), 36.0 (\text{CH}), 41.9 (\text{CH}), 68.6 (\text{CH}_2), 74.9 (\text{CH}), 94.6 (\text{C}), 143.5 (\text{CH}); \quad \text{IR (thin film)} \quad \nu_{\text{max}} = 3397, 2954, 2928, 2856, 1462, 1377, 1361, 1251, 1090 \text{ cm}^{-1}; \quad \text{LRMS} \quad m/z (\text{ESI}) 449 (\text{M+Na})^+; \quad \text{HRMS} \quad m/z (\text{ESI}) \text{ calcd for } \text{C}_{17}\text{H}_{36}\text{O}_2\text{SiI} [\text{M+H}]^+: 427.1524, \text{found } 427.1523.
\]
[α]$_D^{36}$ -31.8, (c 1.0, CHCl$_3$); 1H NMR (300 MHz, C$_6$D$_6$) δ 0.07 (6H, s, 2 x CH$_3$), 0.84 (3H, d, J = 6.8 Hz, CH$_3$), 0.89 (3H, d, J = 6.4 Hz, CH$_3$), 0.98 (9H, s, 3 x CH$_3$), 0.99-1.06 (1H, m, CH$_2$), 1.11-1.21 (1H, m, CH$_2$), 1.25 (1H, br s, OH), 1.35-1.46 (1H, m, CH$_2$), 1.48-1.60 (2H, m, CH and CH$_2$), 2.17 (3H, d, J = 1.5 Hz, CH$_3$), 2.19-2.27 (1H, m, CH), 3.03-3.11 (1H, m, CH), 3.34 (1H, dd, J = 9.8 and 5.6 Hz, CH$_2$), 3.41 (1H, dd, J = 9.8 and 5.6 Hz, CH$_2$), 6.08 (1H, dq, J = 10.0 and 1.5 Hz, CH); 13C NMR (75 MHz, C$_6$D$_6$) δ -5.1 (2 x CH$_3$), 15.5 (CH$_3$), 17.3 (CH$_3$), 18.6 (C), 26.3 (3 x CH$_3$), 28.0 (CH$_3$), 29.8 (CH$_2$), 32.4 (CH$_2$), 36.1 (CH$_3$), 42.0 (CH), 68.3 (CH$_2$), 75.2 (CH), 94.1 (C), 144.5 (CH); IR (thin film) ν_{max} = 3358, 2954, 2928, 2856, 1633, 1462, 1378, 1361, 1252, 1092 cm$^{-1}$; LRMS m/z (ESI) 449 (M+Na)$^+$; HRMS m/z (ESI) calcd for C$_{17}$H$_{36}$O$_2$SiI [M+H]$^+$: 427.1524, found 427.1521.
Supporting Information
Supporting Information

![Chemical Structure](image)

\([\alpha]^{25}_D\) -33.3, (c 1.0, CHCl₃); \(^1^H\) NMR (300 MHz, C₆D₆) δ 0.07 (6H, s, 2 x CH₃), 0.08 (6H, s, 2 x CH₃), 0.85 (3H, d, J = 6.8 Hz, CH₃), 0.90 (3H, d, J = 6.5 Hz, CH₃), 0.98 (9H, s, 3 x CH₃), 1.00 (9H, s, 3 x CH₃), 1.10-1.20 (1H, m, CH₂), 1.33-1.61 (4H, m, CH₂ and CH₂ and CH), 2.24 (3H, d, J = 1.5 Hz, CH₃), 2.37-2.49 (1H, m, CH), 3.35-3.45 (3H, m, CH and CH₂), 6.24 (1H, dq, J = 10.0 and 1.4 Hz, CH); \(^1^C\) NMR (100 MHz, C₆D₆) δ -5.2 (2 x CH₃), -4.1 (CH₃), -4.0 (CH₃), 16.4 (CH₃), 16.9 (CH₃), 18.3 (C), 18.6 (CH₃), 26.2 (3 x CH₃), 26.2 (3 x CH₃), 28.0 (CH₃), 28.7 (CH₂), 32.1 (CH₂), 36.4 (CH), 40.8 (CH), 68.5 (CH₂), 75.9 (CH), 94.1 (C), 144.3 (CH); LRMS m/z (ESI) 563 (M+Na)⁺; HRMS m/z (ESI) calcd for C\(_{23}\)H\(_{49}\)NO\(_2\)Si\(_2\)I [M+NH₄]⁺: 558.2654, found 558.2651.
Supporting Information
Supporting Information

[α]$_D^{25}$ -32.8, (c 1.0, CHCl$_3$); 1H NMR (400 MHz, C$_6$D$_6$) δ 0.05 (3H, s, CH$_3$), 0.06 (3H, s, CH$_3$), 0.83 (2 x 3H, 2 x d overlapped, J = 6.7 Hz, 2 x CH$_3$), 0.97 (9H, s, 3 x CH$_3$), 1.01-1.06 (1H, m, CH$_2$), 1.29-1.49 (4H, m, CH$_2$ and CH$_2$ and CH), 2.22 (3H, d, J = 1.5 Hz, CH$_3$), 2.35-2.44 (1H, m, CH), 3.17 (1H, dd, J = 10.0 and 6.0 Hz, CH$_2$), 3.23 (1H, dd, J = 10.3 and 5.5 Hz, CH$_2$), 3.33 (1H, q, J = 5.0 Hz, CH), 6.23 (1H, br dq, J = 10.0 and 1.5 Hz, CH); 13C NMR (75 MHz, C$_6$D$_6$) δ -4.2 (CH$_3$), -4.1 (CH$_3$), 16.5 (CH$_3$), 16.8 (CH$_3$), 18.3 (C), 26.2 (3 x CH$_3$), 28.0 (CH$_3$), 28.6 (CH$_2$), 32.2 (CH$_2$), 36.2 (CH), 40.7 (CH), 67.9 (CH$_2$), 75.8 (CH), 94.1 (C), 144.2 (CH); LRMS m/z (ESI) 449 (M+Na)$^+$; HRMS m/z (ESI) calcd for C$_{17}$H$_{36}$O$_2$SiI [M+H]$^+$: 427.1524, found 427.1517.
Supporting Information

\[\alpha \] D -46.0, (c 1.0, CHCl₃); \(^1\)H NMR (300 MHz, C₆D₆) \(\delta \) 0.00 (3H, s, CH₃), 0.03 (3H, s, CH₃), 0.77 (3H, d, \(J = 6.9 \) Hz, CH₃), 0.78 (3H, d, \(J = 7.1 \) Hz, CH₃), 0.94 (9H, s, 3 x CH₃), 1.07-1.16 (1H, m, CH₂), 1.18-1.32 (2H, m, CH₂), 1.41-1.56 (1H, m, CH₂), 1.73-1.84 (1H, m, CH), 2.20 (3H, d, \(J = 1.5 \) Hz, CH₃), 2.24-2.41 (1H, m, CH), 3.26 (1H, q, \(J = 5.5 \) Hz, CH), 6.14 (1H, br dq, \(J = 10.0 \) and 1.5 Hz, CH), 9.30 (1H, d, \(J = 1.3 \) Hz, CH); \(^{13}\)C NMR (75 MHz, C₆D₆) \(\delta \) -4.2 (CH₃), -4.1(CH₃), 13.3 (CH₃), 16.2 (CH₃), 18.3 (CH₃), 25.8 (CH₂), 26.1 (3 x CH₃), 27.9 (CH₃), 31.6 (CH₂), 40.8 (CH), 46.2 (CH), 75.2 (CH), 94.3 (C), 144.0 (CH), 202.9 (CH); IR (thin film) \(\nu \) max = 2256, 2931, 2858, 1709, 1472, 1464, 1379, 1361, 1254, 1067, 1045, 1027, 1006 cm⁻¹; LRMS m/z (ESI) 447 (M+Na)⁺
Supporting Information

The alcohol is not described because the mixture of diastereomers.

IR (thin film) \(\nu_{\text{max}} = 3364, 2957, 2928, 2883, 2857, 1471, 1461, 1406, 1378, 1361, 1253, 1065, 1027, 1004, 942 \text{ cm}^{-1} \); **LRMS** \(m/z \) (ESI) 463 (M+Na); **HRMS** \(m/z \) (ESI) calcd for C\(_{18}\)H\(_{38}\)O\(_2\)SiI [M+H]\(^{+}\): 441.1680, found 441.1667.
[α]_{D}^{28} -28.6, (c 1.0, CHCl₃); \(^1\)H NMR (300 MHz, C₆D₆) δ 0.03 (3H, s, CH₃), 0.04 (3H, s, CH₃), 0.79 (3H, d, J = 6.8 Hz, CH₃), 0.87 (3H, d, J = 7.0 Hz, CH₃), 0.95 (9H, s, 3 x CH₃), 1.15-1.38 (3H, m, CH₂ and CH₂), 1.49-1.59 (1H, m, CH₂), 1.75 (3H, s, CH₃), 2.01-2.10 (1H, m, CH), 2.21 (3H, d, J = 1.5 Hz, CH₃), 2.28-2.40 (1H, m, CH), 3.26-3.31 (1H, m, CH), 6.17 (1H, br dq, J = 10.0 and 1.5 Hz, CH); \(^{13}\)C NMR (75 MHz, C₆D₆) δ -4.2 (CH₃), -4.1 (CH₃), 16.3 (CH₃), 16.5 (CH₃), 18.3 (C), 26.2 (3 x CH₃), 27.8 (CH₃), 28.0 (CH₃), 28.3 (CH₂), 32.3 (CH₂), 40.7 (CH), 47.0 (CH), 75.4 (CH), 94.3 (CH), 144.0 (CH), 209.6 (CH); IR (thin film) ν_max = 2955, 2929, 2856, 1713, 1471, 1461, 1378, 1359, 1253, 1170, 1067, 1043, 1026, 1006, 940 cm\(^{-1}\); LRMS m/z (ESI) 461 (M+Na); HRMS m/z (ESI) calcd for C\(_{18}\)H\(_{36}\)O\(_2\)SiI [M+H]\(^{+}\): 439.1524, found 439.1517.