Electronic Supplementary Information

A Novel and Efficient Synthesis of Diverse Dihydronaphtho[1,2-b]furans Using the Ceric Ammonium Nitrate-Catalyzed Formal [3+2] Cycloaddition of 1,4-Naphthoquinones to Olefins and Its Application to Furomollugin

Likai Xia and Yong Rok Lee*

School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea

Contents

1H and 13C NMR spectra of Compound (7) ... S1
1H and 13C NMR spectra of Compound (8) ... S2
1H and 13C NMR spectra of Compound (9) ... S3
1H and 13C NMR spectra of Compound (10) ... S4
1H and 13C NMR spectra of Compound (11) ... S5
1H and 13C NMR spectra of Compound (12) ... S6
1H and 13C NMR spectra of Compound (13) ... S7
1H and 13C NMR spectra of Compound (14) ... S8
1H and 13C NMR spectra of Compound (15) ... S9
1H and 13C NMR spectra of Compound (16) ... S10
1H and 13C NMR spectra of Compound (17) ... S11
1H and 13C NMR spectra of Compound (18) ... S12
1H and 13C NMR spectra of Compound (19) ... S13
1-D NOE NMR Spectrum of Compound (19) ... S14
1H and 13C NMR spectra of Compound (20) ... S15
1H and 13C NMR spectra of Compound (21) ... S16
1H and 13C NMR spectra of Compound (22) ... S17
1H and 13C NMR spectra of Compound (23) ... S18
1H and 13C NMR spectra of Compound (24) ... S19
1H and 13C NMR spectra of Compound (25) ... S20
1H and 13C NMR spectra of Compound (26) ... S21
1H and 13C NMR spectra of Compound (27) ... S22
1H and 13C NMR spectra of Compound (28) ... S23
1H NMR of Compound 16

300 MHz, CDCl$_3$

13C NMR of Compound 16

75 MHz, CDCl$_3$
1-D NOE NMR Spectrum of Compound 19

Irradiated at the aromatic proton that appeared at δ 7.42 ppm
1H NMR of Compound 21

300 MHz, CDCl$_3$

13C NMR of Compound 21

75 MHz, CDCl$_3$
1H NMR of Compound 22

13C NMR of Compound 22
1H NMR of Compound 25

300 MHz, CDCl$_3$

13C NMR of Compound 25

75 MHz, CDCl$_3$
1H NMR of Compound 26

12C NMR of Compound 26
1H NMR of Compound 28

300 MHz, CDCl$_3$

13C NMR of Compound 28

75 MHz, CDCl$_3$
1H NMR of Compound 30

13C NMR of Compound 30
1H NMR of Compound 31

13C NMR of Compound 31

300 MHz, CDCl$_3$

75 MHz, CDCl$_3$
1H NMR of Compound 32

$$\text{OH}$$

$$\text{O}$$

$$\text{OMe}$$

300 MHz, CDCl$_3$

13C NMR of Compound 32

$$\text{OH}$$

$$\text{O}$$

$$\text{OMe}$$

75 MHz, CDCl$_3$