Regio- and stereoselective synthesis of spirooxindole 1’-nitro pyrrolizidines with five concurrent stereocenters under aqueous media and their bioprospection using the zebrafish (*Danio rerio*) embryo model

Carlos E. Puerto Galvis and Vladimir V. Kouznetsov*

Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, A.A. 678, Colombia

*kouznet@uis.edu.co

ELECTRONIC SUPPORTING INFORMATION

List of contents

1. Reagents.
2. Characterization data of all synthesized spirooxindoles 12a-12t
3. Copies of ¹H NMR, ¹³C NMR, DEPT-135, COSY, HSQC and HMBC charts of the synthesized spirooxindoles 1’-nitro pyrrolizidines 12a-12t.
4. Copies of NOESY charts of the synthesized spirooxindoles 1’-nitro pyrrolizidines 12j and 12s.
5. Structural elucidation of spirooxindole 1’-nitropyrrolizidine 12t through ¹H, COSY and HMBC experiments.
6. Photographic record of the phenotypic changes during the development of the zebrafish embryo tretated with compound 12l after 96 hpf.
7. Photographic record of the phenotypic changes during the development of the zebrafish embryo tretated with compound 12m after 96 hpf.
8. Photographic record of the phenotypic changes during the development of the zebrafish embryo tretated with compound 12o after 96 hpf.

Pages

ESI-2
ESI-2
ESI-15
ESI-61
ESI-62
ESI-63
ESI-63
ESI-64
1. Reagents

Isatin: Was purchased from Aldrich and used as received.
L-Proline: Was purchased from Aldrich and used as received.
2,3,4-Trimethoxybenzaldehyde: Was purchased from Aldrich and used as received.
3,4-Dimethoxybenzaldehyde: Was purchased from Aldrich and used as received.
Piperonal (3,4-Methylenedioxybenzaldehyde): Was purchased from Merck and used as received.
Nitromethane: Was purchased from Merck and used as received.
Silica gel 60 (0.063-0.200 mm) 70-230 mesh: Was purchased from Merck and used as received.
Ethanolamine: Was purchased from Aldrich and used as received.
Methyl iodide: Was purchased from Merck and used as received.
Potassium carbonate: Was purchased from Aldrich and used as received.
Sulfuric acid: Was purchased from Merck and used as received.
Potassium nitrate: Was purchased from Aldrich and used as received.
Trichloroisocyanuric acid: Was purchased from Aldrich and used as received.
trans-4-Hydroxy-L-proline: Was purchased from Aldrich and used as received
Propylene carbonate: Was purchased from Aldrich and used as received.

2. Characterization data of all synthesized spirooxindoles 12a-12t.

1’-Nitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one (12a): White solid (846 mg, 1.93 mmol, 77 % yield); Obtained as a mixture of two regioisomers (12a:12a’ = 64:36); Rf [hexane-EtOAc, 2:1] = 0.38; MP 128-130 °C; FT-IR (KBr disk, cm⁻¹): 3301 ν(NH), 2962 ν(=CHAr), 2869 ν(CH₃), 1727 ν(C=O), 1542 ν(C-NO₂), 1373 ν(C-NO₂), 1326 ν(C-N-C), 1249 ν(C-O-C); Spectroscopy NMR data for the major regioisomer 12a: ¹H NMR (400 MHz, CDCl₃), δ(ppm): 8.29 (1H, s, NH), 7.56 (1H, d, J = 7.8, 1.0 Hz, 4-H_Ar), 7.23 (1H, td, J = 7.8, 1.0 Hz, 6-H_Ar), 7.09 (1H, td, J = 7.6, 0.7 Hz, 5-H_Ar), 6.71 (1H, d, J = 7.6 Hz, 7-H_Ar), 6.26 (1H, t, J = 9.9 Hz, CH-NO₂), 6.25 (2H, s, 9’ and 13’-H_Ar), 4.85 (1H, dd, J = 16.9, 8.1 Hz, 7a’-H), 4.43 (1H, d, J = 10.4 Hz, 2’-H), 3.70 (3H, s, OCH₃), 3.59 (6H, s, 2xOCH₃), 3.26 (1H, td, J = 11.0, 5.5 Hz, 5’-H_eq), 2.89 (1H, t, J = 7.3 Hz, 5’-H_ax), 2.13 (1H, dt, J = 14.0, 7.9 Hz, 7’-H_eq), 2.03-1.95 (1H, m, 6’-H_eq), 1.86-1.78 (1H, m, 6’-H_ax), 1.50 (1H, ddt, J = 12.8, 11.1, 7.8 Hz, 7’-H_ax); ¹³C NMR (101 MHz, CDCl₃), δ(ppm): 178.2, 152.9 (2C), 142.3, 137.3, 130.2 (+), 128.0, 126.1 (+), 125.5, 122.3 (+), 110.7 (+), 105.0 (+, 2C), 91.4 (+), 75.3, 64.2 (+), 60.7 (+), 55.9 (+, 2C), 53.4 (+), 51.2 (-), 27.9 (-), 25.7 (-); HRMS (ESI+): m/z: calcd for C₂₃H₂₈N₃O₆ ([M+Na]⁺) 440,1816, found: 440,1820; calcd for C₂₃H₂₅N₃O₆Na ([M+Na]⁺) 462,1636, found: 462,1633.
1'-Nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12b): White solid (798 mg, 1.95 mmol, 78 % yield); Obtained as a mixture of two regioisomers (12b:12b' = 74:26);

Rf [hexane-EtOAc, 2:1] = 0.42;

MP 192-194 °C;

FT -IR (KBr disk, cm⁻¹): 3286 ν(NH), 2962 ν(=CHAr), 2931 ν(OCH₃), 2869 ν(CH₂), 1727 ν(C=O), 1619 ν(C=CHAr), 1542 ν(C-N-C), 1394 ν(C-NO₂), 1265 ν(O-C);

Spectroscopy NMR data for the major regioisomer 12b:

1H NMR (400 MHz, CDCl₃), δ (ppm): 8.37 (1H, s, NH), 7.57 (1H, d, J = 7.5 Hz, 4-HAr), 7.24 (1H, td, J = 7.9, 0.9 Hz, 6-HAr), 7.10 (1H, td, J = 7.8, 0.6 Hz, 5-HAr), 6.72-6.68 (2H, m, 7 and 12'-HAr), 6.61 (1H, d, J = 8.4 Hz, 13'-HAr), 6.45 (1H, d, J = 1.9 Hz, 9'-HAr), 6.27 (1H, t, J = 10.0 Hz, CH-NO₂), 4.84 (1H, dd, J = 16.9, 8.0 Hz, 7a'-H), 4.45 (1H, d, J = 10.6 Hz, 2'-H), 3.72 (3H, s, OCH₃), 3.54 (3H, s, OCH₃), 3.27 (1H, ddd, J = 10.9, 8.7, 5.5 Hz, 5' -Heq), 2.89 (1H, t, J = 7.3 Hz, 5' -Hax), 2.18-2.09 (1H, m, 7' -Heq), 1.99 (1H, dd, J = 11.8, 6.2 Hz, 6' -Hax), 1.85-1.78 (1H, m, 6' -Hax), 1.50 (1H, tt, J = 12.9, 7.7 Hz, 7'-Hax);

13C NMR (101 MHz, CDCl₃), δ (ppm): 178.5, 148.5, 148.5, 142.2, 130.1 (+), 126.2 (+), 125.5, 124.6, 122.4 (+), 120.0 (+), 111.1 (+), 110.9 (+), 110.6 (+), 91.3 (+), 75.3, 64.2 (+), 55.7 (+), 55.5 (+), 52.9 (+), 51.2 (-), 27.9 (-), 25.7 (-); COSY Correlation [δH/δH]: 7.57/7.10 [4-HAr/5-HAr], 7.24/6.72-6.68 [6-HAr/7-HAr], 7.24/7.10 [6-HAr/5-HAr], 6.72-6.68/6.45 [12'-HAr/9'-HAr], 6.72-6.68/6.61 [12'-HAr/13'-HAr], 6.27/4.45 [CH-NO₂/2'-H], 6.27/4.84 [CH-NO₂/7a'-H], 4.84/1.50 [7a'-H/7'-Hax], 4.84/2.18-2.09 [7a'-H/7'-Hax], 3.27/1.85-1.78 [5'-Heq/6'-Hax], 3.27/1.99 [5'-Heq/6'-Hax], 3.27/2.89 [5'-Heq/5'-Hax], 2.89/1.85-1.78 [5'-Hax/6'-Hax], 2.18-2.09/1.50 [7'-Hax/7'-Hax], 1.99/1.50 [6'-Heq/7'-Hax], 1.99/1.85-1.78 [6'-Heq/6'-Hax], 1.85-1.78/1.50 [6'-Hax/7'-Hax].

HSQC Correlation [δH/δC]: 8.37/75.3/125.5/142.2 [NH/C-3'/C-7a/C-3a], 7.57/75.3/130.1/142.2 [4-HAr/C-3'/C-5/C-3a], 7.24/62.6/142.2 [6-HAr/C-5/C-3a], 7.10/110.6/125.5 [5-HAr/C-12'/C-7a], 6.72-6.68/120.0 [7-HAr/C-7], 6.72-6.68/110.6 [12'-HAr/C-13'], 6.61/110.9 [13'-HAr/C-13'], 6.45/111.1 [9'-HAr/C-9'], 6.27/91.3 [CH-NO₂/C-1'], 4.84/64.2 [7a'-H/C-7a'], 4.45/52.9 [2'-H/C-2'], 3.72/55.7 [H-OCH₃/C-OCH₃], 3.54/55.2 [H-OCH₃/C-OCH₃], 3.27/51.2 [5'-Heq/C-5''], 2.89/51.2 [5'-Hax/C-5''], 2.18-2.09/27.9 [7'-Hax/C-7'], 1.99/25.7 [6'-Hax/C-6'], 1.85-1.78/25.7 [6'-Hax/C-6'], 1.50/27.9 [7'-Hax/C-7'].

HMBC Correlation [δH/δC]: 8.37/75.3/125.5/142.2 [NH/C-3'/C-7a/C-3a], 7.57/75.3/130.1/142.2 [4-HAr/C-3'/C-5/C-3a], 7.24/62.6/142.2 [6-HAr/C-5/C-3a], 7.10/110.6/125.5 [5-HAr/C-12'/C-7a], 6.72-6.68/120.0 [7-HAr/C-7], 6.72-6.68/52.9/110.9/148.5 [12'-HAr/C-13'/C-11'], 6.61/124.6/ 148.5 [13'-HAr/C-8'/C-11'], 6.45/52.9/ 120.0/148.5 [9'-HAr/C-2'/C-7/C-10'], 6.27/27.9 /52.9/64.2/110.9/124.6 [CH-NO₂/C-7'/C-2'/C-7a'/C-13'/C-8'], 4.84/51.2/75.3 [7a'-H/C-5'/C-3'], 4.45/75.3/91.3/110.9/120.0/124.6/ 178.5 [2'-H/C-3'/C-1'/C-13'/C-7/C-8'/C-2], 3.72/55.5/148.5 [H-OCH₃/C-OCH₃/C-10'], 3.54/ 55.7/148.5 [H-OCH₃/C-OCH₃/C-11'], 3.27/25.7/75.3 [5'-Heq/C-6'/C-3'], 2.89/25.7/72.9/ 64.2 [5'-Hax/C-6'/C-7a'], 2.18-2.09/25.7/51.3 [7'-Hax/C-6'/C-5''], 1.99/64.2 [6'-Hax/C-7a'], 1.50/25.7/64.2/91.3 [7'-Hax/C-6'/C-7a'/C-1'].

1'-Nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12c): White solid (738 mg, 1.88 mmol, 75 % yield); Obtained as a mixture of two regioisomers (12c:12c' = 62:38); \(R_f\) [hexane-EtOAc, 2:1] = 0.45; MP 198-200 °C; FT -IR (KBr disk, cm\(^{-1}\)):

- 3193 \(\nu\) (NH)
- 3085 \(\nu\) (=CHAr)
- 2977 \(\nu\) (OCH\(_2\)O)
- 2885 \(\nu\) (CH\(_2\))
- 1712 \(\nu\) (C=O)
- 1619 \(\nu\) (CAr=CAr)
- 1527 \(\nu\) (C-NO\(_2\))
- 1373 \(\nu\) (C-NO\(_2\))
- 1342 \(\nu\) (C-N-C)
- 1249 \(\nu\) (C-O-C);

Spectroscopy NMR data for the major regioisomer 12c:

- \(^1H\) NMR (400 MHz, CDCl\(_3\), \(\delta\) (ppm): 7.92 (1H, s, \(N\)H), 7.53 (1H, d, \(J = 7.4\) Hz, 4-H\(_{Ar}\)), 7.12-7.07 (1H, m, 6-H\(_{Ar}\)), 6.96-6.87 (1H, m, 5-H\(_{Ar}\)), 6.74 (1H, d, \(J = 8.0\) Hz, 7-H\(_{Ar}\)), 6.63 (1H, d, \(J = 1.0\) Hz, 9'-H\(_{Ar}\)), 6.56 (2H, dt, \(J = 14.1, 4.6\) Hz, 12' and 13'-H\(_{Ar}\)), 6.20 (1H, t, \(J = 10.0\) Hz, CH-NO\(_2\)), 5.83 (2H, s, -OCH\(_2\)O), 4.83 (1H, dd, \(J = 17.0, 7.9\) Hz, 7a'-H), 4.41 (1H, d, \(J = 10.7\) Hz, 2'-H), 3.23 (1H, ddt, \(J = 10.6, 5.6\) Hz, 6'-H\(_{eq}\)), 1.98 (1H, dd, \(J = 10.6, 5.6\) Hz, 6'-H\(_{ax}\)),

13C NMR (101 MHz, CDCl\(_3\), \(\delta\) (ppm): 178.0, 147.8, 147.4, 141.9, 130.2 (+), 126.2, 126.2, 122.6 (+), 122.1 (+), 110.5 (+), 108.5 (+), 108.4 (+), 101.2 (-), 92.1 (+), 75.1, 64.0 (+), 53.0 (+), 51.2 (-), 27.9 (-), 25.7 (-).

HRMS (ESI+): \(m/z\) calcd for C\(_{21}\)H\(_{20}\)N\(_3\)O\(_5\) ([M+H]+) 394.1397, found: 394.1402; Calcd for C\(_{21}\)H\(_{19}\)N\(_3\)O\(_5\)Na ([M+Na]+) 416.1217, found: 416.1221.

1-Methyl-1'-nitro-2'(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12d): White solid (941 mg, 2.08 mmol, 83 % yield); \(R_f\) [hexane-EtOAc, 2:1] = 0.31; MP 174-176 °C; FT -IR (KBr disk, cm\(^{-1}\)):

- 2946 \(\nu\) (=CHAr)
- 2930 \(\nu\) (OCH\(_3\))
- 2838 \(\nu\) (CH\(_2\))
- 1712 \(\nu\) (C=O)
- 1589 \(\nu\) (CAr=CAr)
- 1542 \(\nu\) (C-NO\(_2\))
- 1465 \(\nu\) (CH\(_3\))
- 1373 \(\nu\) (C-NO\(_2\))
- 1342 \(\nu\) (C-N-C)
- 1249 \(\nu\) (C-O-C);

1H NMR (400 MHz, CDCl\(_3\), \(\delta\) (ppm): 7.58 (1H, d, \(J = 7.0\) Hz, 4-H\(_{Ar}\)), 7.29 (1H, td, \(J = 7.7, 1.1\) Hz, 6-H\(_{Ar}\)), 7.11 (1H, td, \(J = 7.6, 0.9\) Hz, 5-H\(_{Ar}\)), 6.65 (1H, d, \(J = 7.6\) Hz, 7-H\(_{Ar}\)), 6.27 (1H, dd, \(J = 10.3, 9.6\) Hz, CH-NO\(_2\)), 6.24 (2H, s, 9' and 13'-H\(_{Ar}\)), 4.90 (1H, dd, \(J = 17.0, 7.9\) Hz, 7a'-H), 4.42 (1H, d, \(J = 10.5\) Hz, 2'-H), 3.71 (3H, s, OCH\(_3\)), 3.62 (6H, s, 2xOCH\(_3\)), 3.27 (1H, ddt, \(J = 10.6, 5.6\) Hz, 6'-H\(_{ax}\)), 1.98 (1H, dd, \(J = 10.6, 5.6\) Hz, 6'-H\(_{eq}\)), 1.82 (1H, ddt, \(J = 15.7, 11.4, 4.8\) Hz, 6'-H\(_{ax}\)), 1.48 (1H, ddt, \(J = 15.8, 13.0, 8.0\) Hz, 7'-H\(_{ax}\));

13C NMR (101 MHz, CDCl\(_3\)), \(\delta\) (ppm): 178.0, 147.8, 147.4, 141.9, 130.2 (+), 126.2 (+), 126.1, 125.2, 122.6 (+), 122.1 (+), 110.5 (+), 108.5 (+), 108.4 (+), 101.2 (-), 92.1 (+), 75.1, 64.0 (+), 53.0 (+), 51.2 (-), 27.9 (-), 25.7 (-);

HRMS (ESI+): \(m/z\) calcd for C\(_{21}\)H\(_{20}\)N\(_3\)O\(_5\) ([M+H]+) 394,1397, found: 394,1402; Calcd for C\(_{21}\)H\(_{19}\)N\(_3\)O\(_5\)Na ([M+Na]+) 416,1217, found: 416,1221.

Puerto & Kouznetsov, Page ESI-4

4], 7.29/130.2 [6-H$_{Ar}$/C-6], 7.11/122.4 [5-H$_{Ar}$/C-5], 6.65/108.8 [7-H$_{Ar}$/C-7], 6.27/91.9 [CH-NO$_2$/C-1’],

6.24/104.9 [9’ and 13’-HAr/C-9’ and C-13’], 4.90/64.3 [7a’-H/C-7a’], 4.42/53.5 [2’-H/C-2’], 3.71/60.8 [H-OCH3/C-OCH3], 3.62/56.0 [2xH-OCH3/2xC-OCH3], 3.27/51.4 [5’-Heq/C-5’], 2.94/25.7 [H-NCH3/C-NCH3], 2.89/51.4 [5’-Hax/C-5’], 2.16/27.9 [7’-Heq/C-7’], 1.99/25.9 [6’-Heq/C-6’], 1.83/25.9 [6’-Hax/C-6’], 1.49/27.9 [7’-Hax/C-7’].

HMBC Correlation [δH/δC]: 7.58/75.0/108.8/130.2/144.9 [4-HAr/C-3’/C-7/C-6/C-7a], 7.29/108/122.4/125.7/144.9 [6-HAr/C-7/C-5/C-4/C-7a], 7.11/108.8/125.0/130.2/144.9 [5-HAr/C-7/C-3a/C-6/C-7a], 6.65/122.4/125.0/144.9 [7-HAr/C-5/C-3a/C-7a], 6.27/27.9/53.5/64.3/75.0 [CH-N(NO2)/C-7’/C-2’/C-7a’/C-3], 6.24/104.9/125.0/128.1/137.3 /152.9 [9’ and 13’-HAr/C-9’-C-3a/C-8’/C-11’/C-10’ and C-12’], 4.90/25.7/27.9/51.4/75.0 [7a’-H/C-6’/C-7’/C-5’/C-3’], 4.42/75.0/91.9/104.9/125.0/128.1/176.2 [2’-H/C-3’/C-1’/C-9’ and C-13’/C-3a/C-8’/C-2’], 3.71/137.3 [H-OCH3/C-11’], 3.62/104.9/152.9 [2xH-OCH3/C-9’ and -C-13’/C-10’ and C-12’], 1.49/25.7/75.0 [5’-Heq/C-6’/C-3’], 2.94/144.9/176.2 [N-CH3/C-7a/C-2’], 2.89/25.7/27.9/64.3 [5’-Heq/C-6’/C-3’/C-7a], 2.16/25.7/51.4/64.3/91.9 [7’-Hax/C-6’/C-3’/C-7a’/C-3], 1.99/27.9/64.3 [6’-Heq/C-7’/C-7a’/C-1’]; HRMS (ESI+): m/z: caled for C24H26N4O6 ([M+H]+) 454,1973, found: 454,1977; caled for C24H27N4O6Na ([M+Na]+) 476,1792, found: 476,1788.

1-Methyl-1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7’a-hexahydrospiro
indoline-3,3’-pyrroloidin-2-one (12e): White solid (847 mg, 2.00 mmol, 80 % yield); Rf [hexane-EtOAc, 2:1] = 0.34; MP 103-105 °C; FT-IR (KBr disk, cm−1): 2962 ν(=CHAr), 2931 ν(=CH3), 2838 ν(CH2), 1712 ν(C=O), 1604 ν(C=O), 1542 ν(CH3), 1373 ν(C=NO2), 1342 ν(C-N-C), 1265 ν(C-O-C); 1H NMR (400 MHz, CDCl3), δ (ppm): 7.58 (1H, d, J = 7.5 Hz, 4-HAr), 7.29 (1H, td, J = 7.8, 1.0 Hz, 6-HAr), 7.11 (1H, td, J = 7.8, 0.9 Hz, 5-HAr), 6.67 (1H, dd, J = 8.3, 1.8 Hz, 12’-HAr), 6.63 (1H, d, J = 7.8 Hz, 7’-HAr), 6.60 (1H, d, J = 8.3 Hz, 13’-HAr), 6.46 (1H, d, J = 1.8 Hz, 9’-HAr), 6.28 (1H, t, J = 10.0 Hz, CH-NO2), 4.89 (1H, dd, J = 17.0, 7.9 Hz, 7a’-H), 4.44 (1H, d, J = 10.6 Hz, 2’-H), 3.75 (3H, s, OCH3), 3.59 (3H, s, OCH3), 3.28 (1H, ddd, J = 11.3, 8.4, 5.3 Hz, 5’-Heq), 2.93 (3H, s, NCH3), 2.88 (1H, t, J = 7.4 Hz, 5’-Hax), 2.15 (1H, dt, J = 13.9, 7.9 Hz, 7’-Hax), 1.99 (1H, dd, J = 12.2, 5.7 Hz, 6’-Hax), 1.82 (1H, ddd, J = 16.4, 11.5, 4.2 Hz, 6’-Hax), 1.50 (1H, ddt, J = 13.0, 11.1, 7.7 Hz, 7’-Hax); 13C NMR (101 MHz, CDCl3), δ (ppm): 176.3, 148.5 (2C), 144.9, 130.1 (+), 125.8 (+), 125.1, 124.8, 122.4 (+), 120.3 (+), 110.9 (+), 110.8 (+), 108.7 (+), 91.8 (+), 75.0, 64.3 (+), 55.7 (+), 55.6 (+), 53.0 (+), 51.4 (-), 27.9 (-), 25.9 (-), 25.7 (+); COSY Correlation [δH/δC]: 7.58/7.11 [4-HAr/5-HAr], 7.29/6.63 [6-HAr/7-HAr], 7.29/7.11 [6-HAr/5-HAr], 6.67/6.46 [12’-HAr/9’-HAr], 6.28/4.44 [CH-NO2/2’-H], 6.28/4.89 [CH-NO2/7a’-H], 4.89/1.50 [7a’-H/7’-Hax], 4.89/2.15 [7a’-H/7’-Hax], 3.28/1.82 [5’-Hax/6’-Hax], 3.28/1.99 [5’-Hax/6’-Hax], 3.28/2.88 [5’-Hax/5’-Hax], 2.88/1.82 [5’-Hax/6’-Hax], 2.15/1.50 [7’-Hax/7’-Hax], 1.99/1.50 [6’-Hax/7’-Hax], 1.99/1.82 [6’-Hax/6’-Hax], 1.82/1.50 [6’-Hax/7’-Hax]. HSQC Correlation [δH/δC]: 7.58/125.8 [4-HAr/C-4’], 7.29/130.1 [6-HAr/C-6’], 7.11/122.4 [5-HAr/C-5’], 6.67/108.7

1-Methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiroindoline-3,3’-pyrrolizin-2-one (12f): White solid (866 mg, 2.13 mmol, 85 % yield); Rf [hexane-EtOAc, 2:1] = 0.38; MP 192-194 °C; FT-IR (KBr disk, cm⁻¹): 2977 ν(OCH2O), 2946 ν(=CHAr), 2885 ν(CH2), 1712 ν(C=O), 1542 ν(C-N-C), 1357 ν(C=O), 1249 ν(C-O-C); 1H NMR (400 MHz, CDCl₃), δ(ppm): 7.52 (1H, d, J = 2.0 Hz, 4’-HAr), 7.27 (1H, dd, J = 8.5, 1.9 Hz, 6’-HAr), 6.62 (1H, s, 5’-HAr), 6.60 (1H, s, 7’-HAr), 6.58 (1H, s, 9’-HAr), 6.55 (2H, d, J = 0.9 Hz, -OCH2O-), 6.16 (1H, t, J = 10.0 Hz, CH-N=O2), 5.84 (2H, dd, J = 4.3, 1.3 Hz, 12’ and 13’-H), 4.85 (1H, dd, J = 17.1, 8.0 Hz, 7a’-H), 4.36 (1H, d, J = 10.5 Hz, 2’-H), 3.17 (1H, ddd, J = 11.3, 8.2, 5.3 Hz, 5’-Hax), 2.98 (3H, s, NCH3), 2.85 (1H, t, J = 7.2 Hz, 5’-Hax), 2.17-2.09 (1H, m, 7’-Hax), 2.03-1.96 (1H, m, 6’-Hax), 1.81 (1H, ddd, J = 16.1, 11.3, 4.2 Hz, 6’-Hax), 1.46 (1H, ddt, J = 12.9, 11.4, 7.8 Hz, 7’-Hax). 13C NMR (101 MHz, CDCl₃), δ(ppm): 175.7, 147.8, 147.4, 143.4, 130.1 (+), 127.9, 126.0 (+), 125.8, 122.2 (+, 2C), 109.6 (+), 108.4 (+, 2C), 101.2 (-), 92.4 (+), 74.7, 64.1 (+), 53.1 (+), 51.3 (-), 27.8 (-), 26.1 (+), 25.7 (-), HRMS (ESI+): m/z: calced for C₂₃H₂₆N₃O₅ ([M+H]+) 424,1871, found: 424,1871; calcd for C₂₃H₂₅N₃O₅Na ([M+Na]+) 446,1670, found: 446,1670.

6’-Hydroxy-1-methyl-1’-nitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiroindoline-3,3’-pyrrolizin-2-one (12g): Beige solid (939 mg, 2.00 mmol, 80 % yield); Rf [hexane-EtOAc, 2:1] = 0.38; MP 192-194 °C; FT-IR (KBr disk, cm⁻¹): 3455 ν(OH), 2985 ν(CH₂), 1712 ν(C=O), 1604 ν(C=O), 1542 ν(C-N-C), 1373 ν(C=O), 1249 ν(C-O-C); 1H NMR (400 MHz, CDCl₃), δ(ppm): 7.52 (1H, d, J = 2.0 Hz, 4’-HAr), 7.27 (1H, dd, J = 8.5, 1.9 Hz, 6’-HAr), 6.62 (1H, s, 5’-HAr), 6.60 (1H, s, 7’-HAr), 6.58 (1H, s, 9’-HAr), 6.55 (2H, d, J = 0.9 Hz, -OCH₂O-), 6.16 (1H, t, J = 10.0 Hz, CH-N=O₂), 5.84 (2H, dd, J = 4.3, 1.3 Hz, 12’ and 13’-H), 4.85 (1H, dd, J = 17.1, 8.0 Hz, 7a’-H), 4.36 (1H, d, J = 10.5 Hz, 2’-H), 3.17 (1H, ddd, J = 11.3, 8.2, 5.3 Hz, 5’-Hax), 2.98 (3H, s, NCH₃), 2.85 (1H, t, J = 7.2 Hz, 5’-Hax), 2.17-2.09 (1H, m, 7’-Hax), 2.03-1.96 (1H, m, 6’-Hax), 1.81 (1H, ddd, J = 16.1, 11.3, 4.2 Hz, 6’-Hax), 1.46 (1H, ddt, J = 12.9, 11.4, 7.8 Hz, 7’-Hax).

= 7.5, 0.7 Hz, 1H, 4-H\textsubscript{Ar}), 7.31 (1H, td, \(J = 7.8, 1.2\) Hz, 6-H\textsubscript{Ar}), 7.11 (1H, td, \(J = 7.6, 1.0\) Hz, 5-H\textsubscript{Ar}), 6.66 (1H, d, \(J = 7.5\) Hz, 7-H\textsubscript{Ar}), 6.26 (1H, t, \(J = 9.9\) Hz, CH-NO\textsubscript{2}), 6.23 (2H,

6'-Hydroxy-1-methyl-1'-nitro-2'- (3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12h): Beige solid (846 mg, 1.93 mmol, 77 % yield); Rt [hexane-EtOAc, 1:1] = 0.30; MP 129-131 °C; FT-IR (KBr disk, cm\(^{-1}\)):

| ν(C=O) | 175.7, 153.0 (2C), 145.0, 137.5, 130.4 (+), 127.9, 125.4 (+), 124.8, 122.5 (+), 108.9 (+), 105.0 (+, 2C), 92.3 (+), 74.8, 72.0 (+), 63.0 (+), 60.8 (+), 58.5 (+), 56.0 (+, 2C), 54.2 (+), 37.1 (+), 25.9 (+); COSY Correlation [δ(H/δ(C)]: 7.52/125.4 [4-HAr/5-HAr], 7.31/6.66 [6-HAr/7-HAr], 7.31/7.11 [6-HAr/5-HAr], 6.26/4.45 [CH-NO2/2'-H], 6.26/5.12 [CH-NO2/7a'-H], 6.23/3.62 [9' and 13'-HAr/H-CH3], 5.12/1.78 [7a'-H/7'-Hax], 5.12/2.21 [7a'-H/7'-Hax], 4.51/1.78 [6'-H/5'-Hax], 3.45/2.93 [5'-Heq/5'-Hax], 2.93/2.21 [5'-Hax/7'-Hax], 2.21/1.78 [7'-Hax/7'-Hax]. HSQC Correlation [δ(H/δ(C)]: 7.52/125.4 [4-HAr/4-C-4], 7.31/130.4 [6-HAr/6-C-6], 7.11/122.5 [5-HAr/5-C-5], 6.66/108.9 [7-HAr/7-C-7], 6.26/92.3 [CH-NO2/C-1'], 6.23/105.0 [9' and 13'-HAr/C-9' and C-13'], 5.12/63.0 [7a'-H/C-7a'], 4.51/72.0 [6'-H/C-6'], 4.45/54.2 [2'-H/C-2'], 3.71/60.8 [H-CH3/C-CH3], 3.62/56.0 [2H-CH3/2H-CH3], 3.45/58.5 [5'-Hax/C-5'], 2.94/25.9 [H-NCH3/C-NCH3], 2.93/58.5 [5'-Hax/C-5'], 2.21/37.1 [7'-Hax/C-7'], 1.78/37.1 [7'-Hax/C-7']. HMBC Correlation [δ(H/δ(C)]: 7.52/74.8/122.5/130.4/145.0 [4-HAr/C-3'/C-6/C-5/C-7a], 7.31/125.4/145.0 [6-HAr/C-4/C-7a], 7.11/108.9/124.8 [5-HAr/C-7/C-3a], 6.66/122.5/124.8 [7-HAr/C-6/C-3a], 6.26/54.1/63.0 [CH-NO2/C-2/C-7a'], 6.23/105.0/127.9/137.5/153.0 [9' and 13'-HAr/C-13' and C-9'/C-8'/C-11'/C-10' and C-12'], 5.12/58.5 [7a'-H/C-7'], 4.45/74.8/92.3/105.0/124.8/127.9/175.0 [2'H/C-3'/C-1'/C-9' and C-13'/C-3a/C-8'/C-2'], 3.71/137.5 [H-CH3/C-11'], 3.62/152.9 [2H-CH3/2H-CH3], 3.45/74.8 [5'-Hax/C-5'], 2.94/145.0/175.0 [N-Ch3/C-7a/C-2], 2.93/37.4/63.0/72.0 [5'-Hax/C-7'/C-7'a/C-6'], 2.21/58.5/72.0/92.3 [7'-Hax/C-5'/C-6'/C-1'], 1.78/63.0/92.3 [7'-Hax/C-7'a/C-1']; HRMS (ESI+): m/z: calcd for C_{24}H_{27}N_3O_7Na ([M+Na]^+) 470,1922, found: 470,1917; calcd for C_{24}H_{27}N_3O_7Na ([M+Na]^+) 492,1741, found: 492,1744.

Puerto & Kouznetsov, Page ESI-7

-13C NMR (101 MHz, CDCl3), δ (ppm): 175.8, 148.6, 148.5, 144.9, 130.3 (+), 125.5 (+), 124.8, 124.6, 122.5 (+), 120.3 (+), 110.9 (+, 2C), 108.8 (+), 92.3 (+), 74.8, 72.0 (+), 62.9 (+), 58.5 (+), 55.7 (+), 55.6 (+), 53.6 (+), 37.1 (+), 25.9 (+); COSY Correlation [δH/δH]: 7.52/7.12 [4-HAr/5-HAr], 7.31/6.68-6.63 [6-HAr/7-HAr], 7.31/7.12 [6-HAr/5-HAr], 6.68-6.63/6.45 [12'-HAr/9'-HAr], 6.68-6.63/6.61 [12'-HAr/13'-HAr], 6.26/4.47 [CH-NO2/2'-H], 6.26/5.12 [CH-NO2/7a'-H], 5.12/1.79 [7a'-H/7'-Heq], 5.12/2.21 [7a'-H/7'-Hax], 4.51/1.79 [6'-H/7'-Hax], 4.51/3.46 [6'-H/5'-Heq], 3.46/2.93 [5'-Heq/5'-Hax], 2.93/2.21 [5'-Hax/7'-Hax], 2.21/1.89 [7'-Hax/7'-Heq]. HSQC Correlation [δH/δC]: 7.52/125.5 [4-HAr/C-4], 7.31/130.3 [6-HAr/C-6], 7.12/122.5 [5-HAr/C-5], 6.68-6.63/108.8 [12'-HAr/C-12'], 6.68-6.63/120.3 [7-HAr/C-7a], 6.61/110.9 [13'-HAr/C-13'], 6.45/110.9 [9'-HAr/C-9'], 6.26/92.9 [CH-NO2/C-1'], 5.12/62.9 [7a'-H/C-7a'], 4.51/72.0 [6'-H/C-6'], 4.47/53.6 [2'-H/C-2'], 3.75/55.7 [H-OCH3/C-OCH3], 3.59/55.6 [H-OCH3/C-OCH3], 3.46/58.5 [5'-Heq/C-5'], 2.93/25.9 [H-NCH3/C-NCH3], 2.93/58.5 [5'-Hax/C-5'], 2.21/37.1 [7'-Hax/C-7'], 1.79/37.1 [7'-Heq/C-7']. HMBC Correlation [δH/δC]: 7.52/74.8/130.3/144.9 [4-HAr/C-3'/C-6/C-3a], 7.31/125.5/144.9 [6-HAr/C-4/C-3a], 7.12/108.8/124.6 [5-HAr/C-12'/C-7a], 6.68-6.63/53.6/110.9/124.8/148.5/148.6 [12'-HAr/C-2'/C-13' and C-9'/C-10'/C-11'], 6.68-6.63/122.5/124.6 [7-HAr/C-5/C-7a], 6.61/124.6/148.5/148.6 [13'-HAr/C-8'/C-10'/C-11'], 6.45/53.6/120.3/124.8/148.5/148.6 [9'-HAr/C-2'/C-12'/C-8'/C-10'/C-11'], 6.28/36.1/53.6/62.9/110.9/124.8 [CH-NO2/C-7'/C-7a'/C-9' and C-13'-C-8'], 5.12/58.5 [7a'-H/C-9'], 4.47/74.8/92.3/110.9/120.3/124.8/175.8 [2'-H/C-3'/C-1'/C-9' and 13'-C-7/C-8'/C-2], 3.75/148.5 [H-OCH3/C-10'], 3.59/148.6 [H-OCH3/C-11'], 3.46/74.8 [5'-Heq/C-3'], 2.93/144.9/175.8 [N-CH3/C-3a/C-2], 2.93/37.1/62.9/72.0 [5'-Hax/C-7'/C-7a'/C-6'], 2.21/58.5/72.0 [7'-Hax/C-5'/C-6'], 1.79/62.9/72.0/92.3 [7'-Heq/C-7a'/C-6'/C-1']; HRMS (ESI+): m/z: calcd for C23H26N3O6 ([M+H]+) 440.1816, found: 440.1821; calcd for C23H25N3O6Na ([M+Na]+) 462.1636, found: 462.1630.

6'-Hydroxy-1-methyl-1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12i): Beige solid (783 mg, 1.85 mmol, 74% yield); Rf [hexane-EtOAc, 1:1] = 0.33; MP 141-143 °C; FT-IR (KBr disk, cm⁻¹): 3425 ν (-OH), 3054 ν (=CHAr), 2931 ν (CH2), 1712 ν (C=O), 1604 ν (CAr=CAr), 1542 ν (C-NO2), 1496 ν (C-N-C), 1450 ν (CH3), 1373 ν (C-NO2), 1249 ν (C-O-C); 1H NMR (400 MHz, CDCl3), δ (ppm): 7.47 (1H, d, J = 7.5 Hz, 4-HAr), 7.30 (1H, t, J = 7.8 Hz, 6-HAr), 7.11 (1H, t, J = 7.6 Hz, 5-HAr), 6.67 (1H, d, J = 7.8 Hz, 7-HAr), 6.60 (1H, s, 13'-HAr), 6.53 (2H, s, 9' and 12'-HAr), 6.18 (1H, t, J = 9.8 Hz, CH-NO2), 5.84-5.82 (2H, m, -OCH2-O-), 5.08 (1H, dd, J = 16.2, 8.5 Hz, 7a'-H), 4.48 (1H, t, J = 4.1 Hz, 6'-H), 4.42 (1H, d, J = 10.3 Hz, 2'-H), 3.41 (1H, dd, J = 9.6, 3.4 Hz, 5'-Heq), 2.99 (3H, s, NCH3), 2.87 (1H, dd, J = 9.5, 1.6 Hz, 5'-Hax), 2.18 (1H, ddd, J = 14.3, 8.4, 1.7 Hz, 7'-Hax), 1.81 (1H, br.s, -OH), 1.75 (1H, ddd, J = 14.3, 7.0, 5.3 Hz, 7'-Heq). 13C NMR (101 MHz, CDCl3), δ (ppm): 175.8, 147.8, 147.4, 144.8, 130.4 (+), 125.9, 125.4 (+), 124.4, 122.7 (+), 122.1 (+), 108.8 (+), 108.5 (+), 108.3 (+), 101.1 (+), 92.9 (+), 74.6, 71.9 (+), 62.7 (+), 58.4 (-), 53.5 (+), 37.1 (-), 26.0
(+); COSY Correlation $[\delta_H/\delta_H]$:
7.47/7.11 [4-H$_{Ar}$/5-H$_{Ar}$], 7.30/6.67 [6-H$_{Ar}$/7-H$_{Ar}$],
7.30/7.11 [6-H$_{Ar}$/5-H$_{Ar}$], 6.60/6.53 [13’-H$_{Ar}$/9’ and 12’-H$_{Ar}$], 6.18/4.42 [CH-NO$_2$/2’-H],

6.18/5.08 [CH-NO2/7a'-H], 5.08/1.75 [7a'-H/7'-H eq], 5.08/2.18 [7a'-H/7'-H ax], 4.48/1.75 [6'-H/7'-H eq], 4.48/3.41 [6'-H/5'-H eq], 3.41/2.87 [5'-H eq/5'-H ax], 2.87/2.18 [5'-H ax/7'-H ax]. HSQC Correlation [δH/δC]: 7.47/125.4 [4-HAr/C-4], 7.30/130.4 [6-HAr/C-6], 7.11/122.7 [5-HAr/C-5], 6.67/108.8 [7-HAr/C-7], 6.60/108.5 [13'-HAr/C-13'], 6.53/108.3 [9'-HAr/C-9'], 6.53/122.1 [12'-HAr/C-12'], 6.18/92.9 [CH-NO2/C-1'], 5.84-5.82/101.1 [H-OCH2O/C-OCH2O], 5.08/62.7 [7a'-H/C-7a'], 4.48/1.9 [6'-H/C-6'], 4.42/53.5 [2'-H/C-2'], 3.41/58.4 [5'-H eq/C-5'], 2.99/26.0 [H-NCH3/C-NCH3], 2.87/58.4 [5'-H ax/C-5'], 2.18/37.1 [7'-H ax/C-7']. HMBC Correlation [δH/δC]: 7.47/74.6/130.4/144.8 [4-HAr/C-3'/C-6/C-3a], 7.30/125.5/144.8 [6-HAr/C-4/C-3a], 7.11/108.8/124.4 [5-HAr/C-7/C-7a], 6.67/53.5/122.1/124.4/147.4/147.8 [2'-H/C-3'/C-1'/C-9'/C-12'/C-7a/C-8'/C-2].

5-Chloro-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12j): White solid (1.02 g, 2.10 mmol, 84% yield); Rf [hexane-EtOAc, 2:1] = 0.60; MP 180-182 °C; FT-IR (KBr disk, cm⁻¹): 3070 ν (=CHAr), 2946 ν (OCH3), 2838 ν (CH2), 1712 ν (C=O), 1589 ν (CAr=CAr), 1542 ν (C-NO2), 1496 ν (CH3), 1357 ν (C-N=O), 1234 ν (C-OC), 817 ν (C=Cl), 1H NMR (400 MHz, CDCl3), δ (ppm): 7.56 (1H, d, J = 1.8 Hz, 4-HAr), 7.28 (1H, dd, J = 8.4, 2.0 Hz, 6-HAr), 6.58 (1H, d, J = 8.3 Hz, 7-HAr), 6.26 (2H, s, 9' and 12'-HAr), 6.24 (1H, t, J = 10 Hz, CH-NO2), 4.88 (1H, dd, J = 17.0, 8.0 Hz, 7a'-H), 4.37 (1H, d, J = 10.6 Hz, 2'-H), 3.72 (3H, s, OCH3), 3.66 (6H, s, 2xOCH3), 3.21 (1H, ddd, J = 11.1, 8.3, 5.4 Hz, 5'-H eq), 2.94 (3H, s, NCH3), 2.91 (1H, t, J = 7.3 Hz, 5'-H ax), 2.20-2.12 (1H, m, 7'-H eq), 2.02 (1H, dt, J = 11.9, 6.1 Hz, 6'-H eq), 1.90-1.77 (1H, m, 6'-H ax), 1.48 (1H, ddt, J = 12.9, 11.4, 7.7 Hz, 7'-H ax); 13C NMR (101 MHz, CDCl3), δ (ppm): 175.8, 153.0 (2C), 143.4, 137.4, 130.1 (+), 127.9, 127.7, 126.7, 126.1 (+), 109.8 (+), 104.9 (+, 2C), 91.6 (+), 74.9, 64.3 (+), 60.8 (+, 2C), 56.0 (+), 53.7 (+), 51.4 (-), 27.9 (-), 26.0 (+), 25.7 (-); HRMS (ESI+): m/z: calcd for C22H22N3O6 ([M+H]+) 424,1503, found: 424,1507; Calcd for C22H21N3O6Na ([M+Na]+) 446,1323, found: 446,1328.

5-Chloro-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12k): White solid (1.00 g, 2.20 mmol, 88% yield); Rf [hexane-EtOAc, 2:1] = 0.60; MP 181-183 °C; FT-IR (KBr disk, cm⁻¹): 3070 ν (=CHAr), 2946 ν (OCH3), 2838 ν (CH2), 1712 ν (C=O), 1604 ν (CAr=CAr), 1542 ν (C-N=O), 1465 ν (CH3), 1357

\[
v(\text{C-NO}_2), 1265 \text{ } v(\text{C-O-C}), 817 \text{ } v(\text{C-Cl}), \text{ } ^1H \text{ NMR (400 MHz, CDCl}_3), \delta(\text{ppm}): 7.57 (1H, d, J = 1.4 Hz, 4-\text{H}_{\text{Ar}}), 7.27 (1H, dd, J = 8.2, 1.7 Hz, 6-\text{H}_{\text{Ar}}), 6.66 (1H, dd, J = 8.2, 1.5 Hz, 7-\text{H}_{\text{Ar}}), 6.62 (1H, d, J = 8.2 Hz, 12’-\text{H}_{\text{Ar}}), 6.56 (1H, d, J = 8.4 Hz, 13’-\text{H}_{\text{Ar}}), 6.51 (1H, s, 9’-\text{H}_{\text{Ar}}), 6.24 (1H, t, J = 9.9 Hz, \text{CH-NO}_2), 4.88 (1H, dd, J = 16.8, 8.2 Hz, 7a’-\text{H}), 4.40 (1H, d, J = 10.5 Hz, 2’-\text{H}), 3.76 (3H, s, OCH_3), 3.65 (3H, s, OCH_3), 3.22 (1H, ddd, J = 11.5, 8.0, 5.3 Hz, 5’-\text{H}_{eq}), 2.92 (3H, s, NCH_3), 2.89 (1H, t, J = 7.8 Hz, 5’-\text{H}_{ax}), 2.19-2.11 (1H, m, 7’-\text{H}_{eq}), 2.02 (1H, dt, J = 12.2, 6.1 Hz, 6’-\text{H}_{eq}), 1.83 (1H, tdd, J = 18.8, 11.7, 7.1 Hz, 6’-\text{H}_{ax}), 1.53-1.43 (1H, m, 7’-\text{H}_{ax}), \text{C}^{13} \text{NMR (101 MHz, CDCl}_3), \delta(\text{ppm}): 175.8, 148.5, 148.5, 143.3, 129.9 (+), 127.8, 126.7, 126.0 (+), 124.3, 120.3 (+), 110.8 (+), 110.7 (+), 109.5 (+), 91.6 (+), 74.9, 64.2 (+), 55.7 (+), 55.6 (+), 53.1 (+), 51.3 (-), 27.7 (-), 25.9 (+), 25.7 (-); HRMS (ESI+): m/z: calcd for C\text{23}H\text{24}Cl\text{N}_3O\text{5} ([M+Na]^+) 480.1297, found: 480.1294.

5-Chloro-1-methyl-1'-nitro-2'- (3,4-methylenedioxyphenyl)-1,2',5',6',7',7a'-hexahydropyrido[1,2-c]indoline-3,3'-pyrrolizin]-2-one (12l): White solid (1.00 g, 2.28 mmol, 91 % yield); Rf [hexane-EtOAc, 2:1] = 0.63; MP 172-173 °C; FT-IR (KBr disk, cm\(^{-1}\)): 3054 v(=C_Ar), 2977 v(OCH_2O), 2915 v(CH_2), 1697 v(C=O), 1604 v(C_Ar=C_Ar), 1542 v(\text{C-NO}_2), 1496 v(C-N-C), 1357 v(C-NO_2), 1234 v(C-O-C), 817 v(C-Cl); \text{C}^{13} \text{NMR (101 MHz, CDCl}_3), \delta(\text{ppm}): 175.7, 148.7, 147.4, 143.4, 130.1 (+), 127.9, 126.5, 126.0 (+), 125.8, 122.2 (+), 109.6 (+), 108.4 (+, 2C), 101.2 (-), 92.4 (+), 74.7, 64.1 (+), 53.1 (+), 51.3 (-), 27.8 (-), 26.1 (+), 25.7 (-); HRMS (ESI+): m/z: calcd for C\text{22}H\text{21}Cl\text{N}_3O\text{5} ([M+H]^+) 458,1477, found: 458,1481; calcd for C\text{23}H\text{24}Cl\text{N}_3O\text{5}Na ([M+Na]^+) 480,1297, found: 480,1294.

Puerto & Kouznetsov, Page ESI-10

1H NMR (400 MHz, CDCl$_3$), δ(ppm): 175.3, 153.0 (+, 2C), 143.5, 137.5, 130.2 (+), 127.9, 127.4, 126.4, 125.8 (+), 109.9 (+), 104.9 (+, 2C), 92.0 (+), 74.8, 71.8 (+), 63.1

(+), 60.8 (+), 58.4 (-), 56.0 (+, 2C), 54.2 (+), 37.0 (-), 26.0 (+); COSY Correlation \[\delta_H/\delta_H\]: 7.50/7.29 [4-H\textsubscript{Ar}/6-H\textsubscript{Ar}], 7.29/6.59 [6-H\textsubscript{Ar}/7-H\textsubscript{Ar}], 6.25/3.65 [9' and 13'-H\textsubscript{Ar}/H-OCH\textsubscript{3}], 6.21/4.38 [CH-NO\textsubscript{2}/2'-H], 6.21/5.11 [CH-NO\textsubscript{2}/7a'-H], 5.11/1.76 [7a'-H/7'-H\textsubscript{eq}], 5.11/2.20 [7a'-H/7'-H\textsubscript{ax}], 4.53/1.76 [6'-H/7'-H\textsubscript{eq}], 4.53/3.40 [6'-H/5'-H\textsubscript{eq}], 3.40/2.95-2.89 [5'-H\textsubscript{eq}/5'-H\textsubscript{ax}], 2.95-2.89/2.20 [5'-H\textsubscript{ax}/7'-H\textsubscript{ax}], 2.20/1.76 [7'-H\textsubscript{ax}/7'-H\textsubscript{eq}].

HSQC Correlation \[\delta_H/\delta_C\]: 7.50/125.8 [4-H\textsubscript{Ar}/C-4], 7.29/130.2 [6-H\textsubscript{Ar}/C-6], 6.59/109.9 [7-H\textsubscript{Ar}/C-7], 6.21/92.0 [CH-NO\textsubscript{2}/C-1'], 6.25/104.9 [9' and 13'-H\textsubscript{Ar}/C-9' and C-13'], 5.11/63.1 [7a'-H/C-7a'], 4.53/71.8 [6'-H/C-6'], 4.38/54.2 [2'-H/C-2'], 3.72/60.8 [H-OCH\textsubscript{3}/C-OCH\textsubscript{3}], 3.65/56.0 [2xH-OCH\textsubscript{3}/2xC-OCH\textsubscript{3}], 3.40/58.4 [5'-H\textsubscript{eq}/C-5'], 2.93/26.0 [H-NCH\textsubscript{3}/C-NCH\textsubscript{3}], 2.95-2.89/58.4 [5'-H\textsubscript{ax}/5'-H\textsubscript{eq}], 2.20/37.0 [7'-H\textsubscript{ax}/7'-H\textsubscript{eq}], 1.76/37.0 [7'-H\textsubscript{eq}/7'-H\textsubscript{ax}].

HMBC Correlation \[\delta_H/\delta_C\]: 7.50/74.8/127.9/130.2/143.4 [4-H\textsubscript{Ar}/C-3'/C-5/C-6/C-7a'], 7.29/125.8/127.9/143.5 [6-H\textsubscript{Ar}/C-4/C-5/C-7a'], 6.59/126.4/127.9/143.5 [7-H\textsubscript{Ar}/C-3a/C-5/C-7a'], 6.25/104.9/127.9/143.5 [9' and 13'-H\textsubscript{Ar}/C-9' and C-13'], 5.11/63.1 [7a'-H/C-7a'], 4.53/71.8 [6'-H/C-6'], 4.38/54.2 [2'-H/C-2'], 3.72/60.8 [H-OCH\textsubscript{3}/C-OCH\textsubscript{3}], 3.65/56.0 [2xH-OCH\textsubscript{3}/2xC-OCH\textsubscript{3}], 3.40/58.4 [5'-H\textsubscript{eq}/C-5'], 2.93/26.0 [H-NCH\textsubscript{3}/C-NCH\textsubscript{3}], 2.95-2.89/58.4 [5'-H\textsubscript{ax}/5'-H\textsubscript{eq}], 2.20/37.0 [7'-H\textsubscript{ax}/7'-H\textsubscript{eq}], 1.76/37.0 [7'-H\textsubscript{eq}/7'-H\textsubscript{ax}]; HRMS (ESI+): \[m/z\]: calcd for C\textsubscript{24}H\textsubscript{27}ClN\textsubscript{3}O\textsubscript{7} ([M+H]+) 504.1532, found: 504.1536; calcd for C\textsubscript{24}H\textsubscript{26}ClN\textsubscript{3}O\textsubscript{7}Na ([M+Na]+) 526.1351, found: 526.1356.

5-Chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12n): Beige solid (875 mg, 1.85 mmol, 74 % yield); \[R_f\] [hexane-EtOAc, 1:1] = 0.39; MP 196-198 °C; FT-IR (KBr disk, cm\(^{-1}\)): 3440 \(\nu\) (-OH), 3070 \(\nu\) (=CH\textsubscript{Ar}), 2931 \(\nu\) (OCH\textsubscript{3}), 2838 \(\nu\) (CH\textsubscript{2}), 1712 \(\nu\) (C=O), 1604 \(\nu\) (CAr=CAr), 1542 \(\nu\) (C-NO\textsubscript{2}), 1465 \(\nu\) (CH\textsubscript{3}), 1357 \(\nu\) (C-NO\textsubscript{2}), 1265 \(\nu\) (C-O-C), 1104 \(\nu\) (C=O), 1049 \(\nu\) (C=O).

1H NMR (400 MHz, CDCl\textsubscript{3}), \(\delta\) (ppm): 7.51 (1H, d, \(J = 2.0\) Hz, 4'-H\textsubscript{Ar}), 7.28 (1H, dd, \(J = 8.3, 1.6\) Hz, 6'-H\textsubscript{Ar}), 6.67-6.61 (2H, m, 9' and 13'-H\textsubscript{Ar}), 6.57 (1H, d, \(J = 8.3\) Hz, 12'-H\textsubscript{Ar}), 6.51 (1H, d, \(J = 1.5\) Hz, 7'-H\textsubscript{Ar}), 6.22 (1H, t, \(J = 9.8\) Hz, CH-NO\textsubscript{2}), 5.11 (1H, dd, \(J = 16.3, 8.5\) Hz, 7a'-H), 4.54 (1H, t, \(J = 3.9\) Hz, 6'-H), 4.42 (1H, d, \(J = 10.2\) Hz, 2'-H), 3.76 (3H, s, OCH\textsubscript{3}), 3.66 (3H, s, OCH\textsubscript{3}), 2.93 (3H, s, NCH\textsubscript{3}), 2.21 (1H, dd, \(J = 14.4, 8.4\) Hz, 7'-H\textsubscript{ax}), 1.78 (1H, ddd, \(J = 14.1, 6.9, 5.3\) Hz, 7'-H\textsubscript{eq}), 1.73 (1H, br.s, -OH); 13C NMR (101 MHz, CDCl\textsubscript{3}), \(\delta\) (ppm): 175.4, 148.8, 148.7, 143.5, 130.2 (+), 128.0, 126.5, 125.8 (+), 124.1, 120.5 (+), 111.0 (+), 110.8 (+), 109.7 (+), 92.2 (+), 74.8, 72.0 (+), 63.0 (+), 58.4 (-), 55.8 (+), 55.7 (+), 53.8 (+), 37.1 (-), 26.0 (+); COSY Correlation \[\delta_H/\delta_H\]: 7.51/7.28 [4-H\textsubscript{Ar}/6-H\textsubscript{Ar}], 7.28/6.51 [6-H\textsubscript{Ar}/7-H\textsubscript{Ar}], 6.67-6.61/6.57 [9' and 13'-H\textsubscript{Ar}/12'-H\textsubscript{Ar}], 6.22/4.42 [CH-NO\textsubscript{2}/2'-H], 6.22/5.11 [CH-NO\textsubscript{2}/7a'-H], 5.11/1.78 [7a'-H/7'-H\textsubscript{eq}], 5.11/2.21 [7a'-H/7'-H\textsubscript{ax}], 4.54/1.78 [6'-H/7'-H\textsubscript{eq}], 4.54/3.42 [6'-H/5'-H\textsubscript{eq}], 3.42/2.96-2.90 [5'-H\textsubscript{eq}/5'-H\textsubscript{ax}], 2.93-2.90/2.21 [5'-H\textsubscript{ax}/7'].

Hax], 2.21/1.78 [7’-Hax/7’-Heq]. HSQC Correlation [δ_H/δ_C]: 7.51/125.8 [4-HAr/C-4], 7.28/130.2 [6-HAr/C-6], 6.67-6.61/120.5 [13’-HAr/C-13’], 6.67-6.61/111.0 [9’-HAr/C-9’], 5.11/63.0 [7a’-H/7a’-Hax], 4.54/72.0 [2’-H/C-2’], 3.76/55.8 [H-OCH3/C-OCH3], 3.66/55.7 [H-OCH3/C-OCH3], 3.42/58.4 [5’-Heq/C-5’], 2.93/26.0 [H-NCH3/C-NCH3], 2.21/37.1 [7'-Hax/C-7’], 1.78/37.1 [7’-Heq/C-7’]. HMBC Correlation [δ_H/δ_C]: 7.51/74.8/128.0/130.2/143.5 [4-HAr/C-3’/C-5/C-6/C-3a], 7.28/125.8/128.0/143.5 [6-HAr/C-4/C-5/C-3a], 6.67-6.61/53.8/110.8/124.1/148.7 [9’-HAr/C-2’/C-13’ and C-9’-HAr/C-7a/C-10’/C-11’], 6.57/53.8/120.5/124.1/148.7 [5-HAr/C-6’/C-1’/C-9/C-7/C-8’/C-2], 5.85 (2H, s, -OC2H2O-), 5.10 (1H, dd, J = 16.6, 8.2 Hz, 7a’-H), 4.62 (1H, t, J = 4.0 Hz, 6’-H), 4.45 (1H, d, J = 9.9 Hz, 2’-H), 3.44 (1H, dd, J = 9.1, 3.3 Hz, 5’-Heq), 3.01 (3H, s, NC2H3), 2.86 (1H, dd, J = 9.1, 1.5 Hz, 5’-Hax), 2.23 (1H, ddd, J = 14.6, 8.2, 1.4 Hz, 7’-Hax), 1.87 (1H, br.s, -OH), 1.77 (1H, ddd, J = 14.6, 7.4, 4.9 Hz, 7’-Heq); 13C NMR (101 MHz, CDCl3), δ(ppm): 175.8, 147.9, 147.5, 143.3, 129.3 (+), 128.2, 127.0, 125.7 (+), 124.6, 123.2 (+), 109.8 (+), 109.6 (+), 108.2 (+), 101.3 (-), 92.6 (+), 74.7, 72.0 (+), 62.6 (+), 55.3 (-), 53.4 (+), 36.8 (-), 26.2 (+); HRMS (ESI+): m/z: calcd for C22H25ClN3O6 ([M+H]+) 474,1426, found: 474,1422; calcd for C23H24ClN3O6Na ([M+Na]+) 496,1246, found: 496,1250.

5-Chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12o): Beige solid (847 mg, 1.85 mmol, 74 % yield); Rf [hexane-EtOAc, 1:1] = 0.43; MP 189-191 °C; FT-IR (KBr disk, cm-1): 3425 ν(-OH), 3070 ν(=CHAr), 2915 ν(CH2), 1712 ν(C=O), 1604 ν(CAr=CAr), 1542 ν(C-NO2), 1496 ν(C-N-C), 1357 ν(C-NO2), 1249 ν(C-O-C), 817 ν(C-C), 1H NMR (400 MHz, CDCl3), δ(ppm): 7.38 (1H, s, 4-HAr), 7.31 (1H, dd, J = 8.3, 1.9 Hz, 6-HAr), 6.83 (1H, d, J = 8.3 Hz, 7-HAr), 6.72 (1H, m, 9’-HAr), 6.67-6.59 (2H, m, 12’ and 13’-HAr), 6.15 (1H, t, J = 9.9 Hz, CH-NO2), 5.85 (2H, s, -OC2H2O-), 5.10 (1H, dd, J = 16.6, 8.2 Hz, 7a’-H), 4.62 (1H, t, J = 4.0 Hz, 6’-H), 4.45 (1H, d, J = 9.9 Hz, 2’-H), 3.44 (1H, dd, J = 9.1, 3.3 Hz, 5’-Heq), 3.01 (3H, s, NC2H3), 2.86 (1H, dd, J = 9.1, 1.5 Hz, 5’-Hax), 2.23 (1H, ddd, J = 14.6, 8.2, 1.4 Hz, 7’-Hax), 1.87 (1H, br.s, -OH), 1.77 (1H, ddd, J = 14.6, 7.4, 4.9 Hz, 7’-Heq); 13C NMR (101 MHz, CDCl3), δ(ppm): 175.8, 147.9, 147.5, 143.3, 129.3 (+), 128.2, 127.0, 125.7 (+), 124.6, 123.2 (+), 109.8 (+), 109.6 (+), 108.2 (+), 101.3 (-), 92.6 (+), 74.7, 72.0 (+), 62.6 (+), 55.3 (-), 53.4 (+), 36.8 (-), 26.2 (+); HRMS (ESI+): m/z: calcd for C23H25ClN3O6 ([M+H]+) 474,1426, found: 474,1422; calcd for C23H24ClN3O6Na ([M+Na]+) 496,1246, found: 496,1250.

1-Methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12p): Yellow solid (1.15 g, 2.33 mmol, 93 % yield); Rf [hexane-EtOAc, 2:1] = 0.57; MP 161-163 °C; FT-IR (KBr disk, cm-1): 3425 ν(-OH), 2946 ν(OCH3), 2838 ν(CH2), 1712 ν(C=O), 1604 ν(CAr=CAr), 1542 ν(CNO2), 1465 ν(CH3), 1342 ν(CNO2), 1295 ν(C-O-C); 1H NMR (400 MHz, CDCl3), δ(ppm): 8.46 (1H, d, J = 2.2 Hz, 4-

H_{Ar}, 8.28 (1H, dd, $J = 8.7$, 2.2 Hz, 6-H_{Ar}), 6.77 (1H, d, $J = 8.7$ Hz, 7-H_{Ar}), 6.27 (2H, s, 9’ and 13’-H_{Ar}), 6.22 (1H, t, $J = 10.0$ Hz, CH-NO$_2$), 4.87 (1H, dd, $J = 17.1$, 8.0 Hz, 7a’-

1-Methyl-1',5-dinitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12q): Yellow solid (1.01 g, 2.18 mmol, 87 % yield); Rf [hexane-EtOAc, 2:1] = 0.59; MP 179-181 °C; FT-IR (KBr disk, cm⁻¹): 3085 ν (=CHAr), 2946 ν (OCH3), 1727 ν (C=O), 1619 ν (C=N), 1511 ν (C=O), 1450 ν (CH3), 1342 ν (C=O-NO2), 1265 ν (C-O-C); ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.46 (1H, d, J = 2.0 Hz, 4-HAr), 8.27 (1H, dd, J = 8.6 Hz, 7-HAr), 6.74 (1H, d, J = 8.6 Hz, 7-HAr), 6.63-6.57 (3H, m, 9', 12' and 13' -HAr), 6.22 (1H, t, J = 9.9 Hz, CH-NO2), 4.87 (1H, dd, J = 16.9 Hz, 7a'-H), 4.48 (1H, d, J = 10.5 Hz, 2'-H), 3.74 (3H, s, OC₃H₃), 3.66 (3H, s, OC₂H₂O), 3.27 (1H, ddd, J = 11.8, 8.2, 5.4 Hz, 5' -Heq), 3.03 (3H, s, NC₃H₃), 2.86 (1H, t, J = 7.1 Hz, 5'-Hax), 2.21-2.14 (1H, m, 7' -Hey), 2.07-2.02 (1H, m, 6' -Heq), 1.83 (1H, t, J = 18.8 Hz, 6'-Hax), 1.14 (H, d, J = 12.3 Hz, 7.9 Hz, 7'-Hax); ¹³C NMR (101 MHz, CDCl₃), δ (ppm): 176.5, 150.4, 148.9, 148.8, 143.2, 137.6, 127.3 (+), 127.3, 126.0, 123.8, 121.4 (+), 120.9 (+), 111.1 (+), 110.5 (+), 108.3 (+), 91.7 (+), 74.4, 64.3 (+), 55.8 (+, 2C), 53.2 (+), 51.4 (-), 27.8 (-), 26.0 (+), 25.7 (-); HRMS (ESI+): m/z: calcd for C₂₄H₂₇N₄O₈ ([M+H]+) 499,1823, found: 499,18228; calcd for C₂₄H₂₆N₄O₈Na ([M+Na]+) 521,1643, found: 521,1639.

1-Methyl-1',5-dinitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12r): Yellow solid (1.04 g, 2.30 mmol, 92 % yield); Rf [hexane-EtOAc, 2:1] = 0.65; MP 205-207 °C; FT-IR (KBr disk, cm⁻¹): 3085 ν (=CHAr), 2946 ν (OCH3), 2885 ν (CH2), 1727 ν (C=O), 1619 ν (C=N), 1511 ν (C=O), 1450 ν (CH3), 1342 ν (C=O-NO2), 1265 ν (C-O-C); ¹H NMR (400 MHz, CDCl₃), δ (ppm): 8.44 (1H, d, J = 2.0 Hz, 4-HAr), 8.29 (1H, dd, J = 8.7 Hz, 6-HAr), 6.78 (1H, d, J = 8.6 Hz, 7-HAr), 6.63-6.57 (3H, m, 9', 12' and 13' -HAr), 6.22 (1H, t, J = 9.9 Hz, CH-NO2), 5.86-5.83 (2H, m, 12' and 13' -HAr), 4.85 (1H, dd, J = 17.1 Hz, 7a'-H), 4.45 (1H, d, J = 10.5 Hz, 2'-H), 3.27-3.20 (1H, m, 5' -Hax), 3.03 (3H, s, NC₃H₃), 2.83 (1H, t, J = 7.1 Hz, 5'-Hax), 2.20-2.12 (1H, m, 7' -Hey), 2.07-2.01 (1H, m, 6' -Heq), 1.87-1.75 (1H, m, 6' -Hax), 1.55-1.44 (1H, m, 7' -Hey). ¹³C NMR (101 MHz, CDCl₃), δ (ppm): 176.3, 150.4, 148.0, 147.7, 143.3, 127.3 (+), 125.8, 125.2, 122.2 (+), 121.3 (+), 108.6 (+), 108.4 (+), 108.3 (+), 101.3 (+), 92.1 (+), 74.2, 64.1 (+), 53.1 (+), 51.4 (-), 27.8 (-), 26.5 (+), 25.7 (+); HRMS (ESI+): m/z: calcd for C₂₂H₂₁N₄O₇ ([M+H]+) 453,1405, found: 453,1409; Calcd for C₂₂H₂₀N₄O₇Na ([M+Na]+) 475,1224, found: 475,1221.

6'-Hydroxy-1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7'a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one (12s): Beige solid (1.05 g, 2.05 mmol, 82 % yield); R_f [hexane-EtOAc, 1:1] = 0.37; MP 165-168 °C; FT-IR (KBr disk, cm$^{-1}$): 3517 ν(OH), 3085 ν(CH$_2$), 2931 ν(OCH$_3$), 2838 ν(CH$_3$), 1727 ν(C=O), 1604 ν(C$_{Ar}$-C$_{Ar}$), 1542 ν(C$_{NO_2}$), 1465 ν(CH$_3$), 1342 ν(C$_{NO_2}$), 1295 ν(C-O-C); 1H NMR (400 MHz, CDCl$_3$), δ/ppm: 8.40 (1H, d, $J = 2.2$ Hz, 4-H$_{Ar}$), 8.29 (1H, dd, $J = 8.7, 2.2$ Hz, 6-H$_{Ar}$), 6.78 (1H, d, $J = 8.7$ Hz, 7-H$_{Ar}$), 6.27 (2H, s, 9' and 13'-H$_{Ar}$), 6.22 (1H, t, $J = 9.8$ Hz, CH$_2$-NO$_2$), 5.11 (1H, dd, $J = 16.6, 8.3$ Hz, 7'-H$_{eq}$), 4.58 (1H, t, $J = 3.2$ Hz, 6'-H$_{eq}$), 4.47 (1H, d, $J = 10.3$ Hz, 2'-H$_{eq}$), 3.71 (3H, s, OCH$_3$), 3.64 (6H, s, 2xOCH$_3$), 3.46 (1H, dd, $J = 9.3, 3.4$ Hz, 5'-H$_{eq}$), 3.05 (3H, s, NCH$_3$), 2.90 (1H, dd, $J = 9.1, 1.1$ Hz, 5'-H$_{ax}$), 2.22 (1H, dd, $J = 14.0, 8.2$ Hz, 7'-H$_{ax}$), 1.83-1.78 (1H, dd, $J = 14.4, 7.1, 5.3$ Hz, 7'-H$_{eq}$), 1.75 (1H, br.s, -OH); 13C NMR (101 MHz, CDCl$_3$), δ/ppm: 176.0, 153.2 (2C), 150.5, 143.2, 137.8, 127.5 (+), 127.0, 125.6, 121.0 (+), 108.6 (+), 105.0 (+, 2C), 92.1 (+), 74.2, 71.7 (+), 63.1 (+), 60.8 (+), 58.4 (+), 56.1 (+, 2C), 54.1 (+), 37.0 (+), 26.4 (+); COSY Correlation [δ_H/δ_H]: 8.40/8.29 [4-H$_{Ar}$/6-H$_{Ar}$], 8.29/6.78 [6-H$_{Ar}$/7-H$_{Ar}$], 6.22/4.47 [CH$_2$-NO$_2$/2'-H], 6.22/5.11 [CH$_2$-NO$_2$/7a'-H], 5.11/1.83-1.78 [7a'-H'$/7'$-H$_{ax}$], 5.11/2.22 [7a'-H'/7'$-H_{eq}$], 4.58/1.75 [6'H/OH], 4.58/1.83-1.78 [6'H'/7'-H$_{ax}$], 4.58/3.46 [6'H'/5'-H$_{eq}$], 3.46/2.90 [5'-H$_{eq}$/5'-H$_{ax}$], 2.22/1.83-1.78 [7'-H$_{eq}$/7'$-H_{ax}$]. HSQC Correlation [δ_C/δ_H]: 8.40/121.07 [4-H$_{Ar}$/C-4'], 8.29/127.5 [6-H$_{Ar}$/C-6'], 6.78/108.6 [7-H$_{Ar}$/C-7'], 6.22/105.0 [9' and 13'-H$_{Ar}$/C-9' and C-13'], 6.22/92.1 [CH$_2$-NO$_2$/C-1'], 5.10/63.1/4.58/71.7 [6'-H$_{Ar}$/C-6'], 4.47/54.1 [2'-H'/C-2'], 3.71/60.8 [H-OCH$_3$/C-OCH$_3$], 3.64/56.1 [2xH-OCH$_3$/2xC-OCH$_3$], 3.46/58.4 [5'-H$_{eq}$/C-5'], 3.05/26.4 [H-NCH$_3$/C-NCH$_3$], 2.90/58.4 [5'-H$_{ax}$/C-5'], 2.22/30.7 [7'-H$_{eq}$/C-7'], 1.83-1.78/37.0 [7'-H$_{ax}$/C-7']. HMBC Correlation [δ_H/δ_C]: 8.40/74.2/127.5/143.2/150.5 [4-H$_{Ar}$/C-3'/C-6/C-3a/C-5], 8.29/121.0/143.2/150.5 [6-H$_{Ar}$/C-4/C-3a/C-5], 6.78/125.6/143.2 [7-H$_{Ar}$/C-7a/C-3a], 6.27/54.1/105.0/127.0/137.8/153.2 [9' and 13'-H$_{Ar}$/C-9' and C-13'], 6.22/92.1 [CH$_2$-NO$_2$/C-1'], 5.10/63.1/4.58/71.7 [6'-H$_{Ar}$/C-6'], 4.47/54.1 [2'-H'/C-2'], 3.71/60.8 [H-OCH$_3$/C-OCH$_3$], 3.64/56.1 [2xH-OCH$_3$/2xC-OCH$_3$], 3.46/58.4 [5'-H$_{eq}$/C-5'], 3.05/26.4 [H-NCH$_3$/C-NCH$_3$], 2.90/58.4 [5'-H$_{ax}$/C-5'], 2.22/30.7 [7'-H$_{eq}$/C-7'], 1.83-1.78/37.0 [7'-H$_{ax}$/C-7']. HRMS (ESI+): m/z: calcd for C$_{24}$H$_{27}$N$_4$O$_9$ ([M+H]$^+$) 515,1773, found: 515,1776; calcd for C$_{24}$H$_{26}$N$_4$O$_9$Na ([M+Na]$^+$) 537,1592, found: 537,1589.

Puerto & Kouznetsov, Page ESI-14

8.7 Hz, 7-\textit{H}_{\text{Ar}}), 6.61 (1H, d, \textit{J} = 1.7 Hz, 9'-\textit{H}_{\text{Ar}}), 6.56-6.50 (2H, m, 12' and 13'-\textit{H}_{\text{Ar}}),
6.15 (1H, t,

\[J = 10.1 \text{ Hz, } CH-NO_2 \], 5.86 (1H, d, J = 1.4 Hz, 14’-H(eq), 5.84 (1H, d, J = 1.4 Hz, 14’-H(ax), 5.08 (1H, dd, J = 16.7, 8.2 Hz, 7a’-H), 4.56 (1H, t, J = 4.1 Hz, 6’-H), 4.47 (1H, d, J = 10.3 Hz, 2’-H), 3.45 (1H, dd, J = 9.3, 3.4 Hz, 5’-H(eq), 3.08 (3H, s, NCH_3), 2.88 (1H, dd, J = 9.3, 1.4 Hz, 5’-H(ax), 2.10 (1H, ddd, J = 14.5, 8.3, 1.1 Hz, 7’-H(ax), 1.83 (1H, br.s, -OH)), 1.79 (1H, ddd, J = 14.4, 7.2, 5.2 Hz, 7’-H(eq); 13C NMR (101 MHz, CDCl_3), \[\delta_{(ppm)}: 175.9, 150.5, 148.1, 147.8, 143.3, 127.5 (+), 125.5, 124.9, 122.3 (+), 121.0 (+), 108.6 (+), 108.5 (+), 108.2 (+), 101.3 (-), 92.4 (+), 74.0, 71.7 (+), 62.9 (+), 58.4 (-), 53.6 (+), 37.0 (-), 26.5 (+); COSY Correlation \[\delta_H/\delta_H \]: 8.38/8.29 [4-HAr/6-HAr], 8.29/6.78 [6-HAr/7-HAr], 6.61/6.56-6.50 [9’-HAr/12’ and 13’-HAr], 6.15/4.47 [CH-NO_2/2’-H], 6.15/5.08 [CH-NO_2/7a’-H], 5.08/1.79 [7a’-H/7’-H(eq)], 5.08/2.20 [7a’-H/7’-H(ax)], 4.56/1.79 [6’-H/7’-H(eq)], 4.56/3.45 [6’-H/5’-H(eq)], 3.45/2.88 [5’-H(eq)/5’-H(ax)], 2.88/2.20 [5’-H(ax)/7’-H(ax)], 2.21/1.79 [7’-H(ax)/7’-H(eq)]. HSQC Correlation \[\delta_H/\delta_C \]: 8.38/121.0 [4-HAr/C-4], 8.29/127.5 [6-HAr/C-6], 6.78/108.5 [7-HAr/C-7], 6.61/108.2 [9’-HAr/C-9’], 6.56-6.50/108.6 [12’-HAr/C-12’], 6.56-6.50/122.3 [13’-HAr/C-13’], 6.15/92.4 [CH-NO_2/C-1’], 5.86/101.3 [14’-H(eq/C-OCH_2O), 5.84/101.3 [14’-H(ax/C-OCH_2O)], 5.08/62.9 [7a’-H/C-7a’], 4.56/71.7 [6’-H/C-6’], 4.47/53.6 [2’-H/C-2’], 3.45/58.4 [5’-H(eq/C-5’), 3.08/26.5 [H-NCH_3/C-NCH_3], 2.88/58.4 [5’-H(ax/C-5’), 2.21/37.0 [7’-H(ax/C-7’), 1.79/37.0 [7’-H(eq/C-7’)], HMBC Correlation \[\delta_H/\delta_C \]: 8.38/74.0/127.5//143.3/150.5 [4-HAr/C-3’/C-6/C-3a/C-5], 8.29/121.0/143.3/150.5 [6-HAr/C-4/C-3a/C-5], 6.78/125.5/143.3 [7-HAr/C-7a/C-3a], 6.61/53.6/122.3/147.8/148.1 [9’-HAr/C-2’/C-13’/C-10’/C-11’], 6.56-6.50/108.2/124.9/147.8/148.1 [13’-HAr/C-9’/C-8’/C-10’/C-11’], 6.56-6.50/53.6/147.8/148.1 [12’-HAr/C-2’/C-10’/C-11’], 6.15/37.0/53.6/62.9/101.3/124.9 [CH-NO_2/C-7’/C-2’/C-7a’/C-OCH_2O/C-8’], 5.86/147.8/148.1 [14’-H(eq/C-10’/C-11’], 5.84/147.8/148.1 [14’-H(ax/C-10’/C-11’], 5.08/37.0/58.4 [7a’-H/C-7’/C-5’], 4.47/74.0/92.4/108.2/122.3/124.9/125.9/175.9 [2’-H/C-3’/C-1’/C-9’/C-13’/C-8’/C-2’], 3.45/74.0 [5’-H(eq/C-3’], 3.08/150.5/175.9 [NCH_3/C-5/C-2’], 2.88/37.0/62.9/71.7 [5’-H(ax/C-7’/C-7a’/C-6’), 2.20/58.4/71.7/92.4 [7’-H(ax/C-5’/C-6’/C-1’], 1.79/62.7/71.7/92.4 [7’-H(eq/C-7’/C-6’/C-1’]. HRMS (ESI+): m/z: calcd for C_{22}H_{21}N_4O_8 ([M+H]^+) 469,1354, found: 469,1359; Calcd for C_{22}H_{20}N_4O_8Na ([M+Na]^+) 491,1173, found: 491,1189.

3. Copies of 1H NMR, 13C NMR, DEPT-135, COSY, HSQC and HMBC charts of the synthesized spirooxindoles 1’-nitro pyrrolizidines 12a-12t.
Figure ESI1. 1H-NMR spectrum of 1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12a

Figure ESI2. 13C-NMR spectrum of 1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12a
Figure ESI3. DEPT-135 spectrum of 1’-nitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12a

Figure ESI4. 1H-NMR spectrum of 1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12b
Figure ESI5. 13C-NMR spectrum of 1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'hexahydropyridine-3,3'-pyrrolizin]-2-one 12b

Figure ESI6. DEPT-135 spectrum of 1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'hexahydropyridine-3,3'-pyrrolizin]-2-one 12b
Figure ESI7. COSY spectrum of 1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydropyrido[3',2'-indoline]-2'-one 12b

Figure ESI8. HSQC spectrum of 1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydropyrido[3',2'-indoline]-2'-one 12b

Figure ESI9. HMBC spectrum of 1'-nitro-2'(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12b

Figure ESI10. 1H-NMR spectrum of 1'-nitro-2'(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12c
Figure ESI11. 13C-NMR spectrum of 1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12c

Figure ESI12. DEPT-135 spectrum of 1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12c
Figure ESI13. 1H-NMR spectrum of 1-methyl-1'-nitro-2'- (3,4,5-trimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12d

Figure ESI14. 13C-NMR spectrum of 1-methyl-1'-nitro-2'- (3,4,5-trimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12d
Figure ESI15. DEPT-135 spectrum of 1-methyl-1’-nitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,
7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12d

Figure ESI16. COSY spectrum of 1-methyl-1’-nitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,
7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12d

Figure ESI17. HSQC spectrum of 1-methyl-1'-nitro-2'-{(3,4,5-trimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12d

Figure ESI18. HMBC spectrum of 1-methyl-1'-nitro-2'-{(3,4,5-trimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12d
Figure ESI19. 1H-NMR spectrum of 1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e

Figure ESI20. 13C-NMR spectrum of 1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e

Figure ESI21. DEPT-135 spectrum of 1-methyl-1'-nitro-2'(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e

![DEPT-135 spectrum of 1-methyl-1'-nitro-2'(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e](image1)

Figure ESI22. COSY spectrum of 1-methyl-1'-nitro-2'(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e

![COSY spectrum of 1-methyl-1'-nitro-2'(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12e](image2)

Figure ESI23. HSQC spectrum of 1-methyl-1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12e

Figure ESI24. HMBC spectrum of 1-methyl-1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12e

Puerto & Kouznetsov, Page ESI-27
Figure ESI25. 1H-NMR spectrum of 1-methyl-1'-nitro-2'-{(3,4-methylenedioxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12f

Figure ESI26. 13C-NMR spectrum of 1-methyl-1'-nitro-2'-{(3,4-methylenedioxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12f

Figure ESI27. DEPT-135 spectrum of 1-methyl-1'-nitro-2'-3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12f

![DEPT-135 spectrum of 1-methyl-1'-nitro-2'-3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12f](image)

Figure ESI28. 1H-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g

![1H-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g](image)
Figure ESI29. 13C-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g

Figure ESI30. DEPT-135 spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g
Figure ESI31. COSY spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g

Figure ESI32. HSQC spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g

Figure ESI33. HMBC spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g

![HMBC spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12g](image)

Figure ESI34. 1H-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12h

![1H-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12h](image)
Figure ESI35. 13C-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12h

Figure ESI36. DEPT-135 spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12h
Figure ESI37. COSY spectrum of 6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12h

Figure ESI38. HSQC spectrum of 6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12h

Figure ESI39. HMBC spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12h

Figure ESI40. 1H-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12i

Figure ESI41. 13C-NMR spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'- (3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12i

Figure ESI42. DEPT-135 spectrum of 6'-hydroxy-1-methyl-1'-nitro-2''-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12i

Puerto & Kouznetsov, Page ESI-36

Figure ESI43. COSY spectrum of 6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12i

Figure ESI44. HSQC spectrum of 6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12i

Figure ESI45. HMBC spectrum of 6'-hydroxy-1-methyl-1'-nitro-2'(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12i

Figure ESI46. ¹H-NMR spectrum of 5-chloro-1-methyl-1'-nitro-2'(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12j
Figure ESI47. 13C-NMR spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12j

Figure ESI48. DEPT-135 spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12j
Figure ESI49. 1H-NMR spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',
6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12k

Figure ESI50. 13C-NMR spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',
6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12k

Figure ESI51. DEPT-135 spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12k

Figure ESI52. 1H-NMR spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4-methylenedioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12l

Figure ESI53. 13C-NMR spectrum of 5-chloro-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12l

![13C-NMR spectrum of 5-chloro-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12l](image)

Figure ESI54. DEPT-135 spectrum of 5-chloro-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12l

![DEPT-135 spectrum of 5-chloro-1-methyl-1’-nitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12l](image)

Figure ESI55. 1H-NMR spectrum of 5-chloro-6’-hydroxy-1-methyl-1’-nitro-2’-(3,4,5-trimethoxy phenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12m

Figure ESI56. 13C-NMR spectrum of 5-chloro-6’-hydroxy-1-methyl-1’-nitro-2’-(3,4,5-trimethoxy phenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12m

Figure ESI57. DEPT-135 spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12m

Figure ESI58. COSY spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4,5-trimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12m

Figure ESI59. HSQC spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'(3,4,5-trimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12m

Figure ESI60. HMBC spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'(3,4,5-trimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12m
Figure ESI61. 1H-NMR spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxy phenyl)-1',2','5','6','7','7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12n

Figure ESI62. 13C-NMR spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-dimethoxy phenyl)-1',2','5','6','7','7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12n
Figure ESI63. DEPT-135 spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-((3,4-dimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12n

Figure ESI64. COSY spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-((3,4-dimethoxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12n
Regio- and stereoselective synthesis of spirooxindole 1’-nitro pyrrolizidines.

Figure ESI65. HSQC spectrum of 5-chloro-6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-dimethoxy phenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12n

Figure ESI66. HMBC spectrum of 5-chloro-6’-hydroxy-1-methyl-1’-nitro-2’-(3,4-dimethoxy phenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12n

Figure ESI67. 1H-NMR spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'- (3,4-methylene dioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12o

Figure ESI68. 13C-NMR spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'- (3,4-methylene dioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12o
Figure ESI69. DEPT-135 spectrum of 5-chloro-6'-hydroxy-1-methyl-1'-nitro-2'-(3,4-methylene dioxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12o

Figure ESI70. 1H-NMR spectrum of 1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12p
Figure ESI71. 13C-NMR spectrum of 1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6', 7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12p

Figure ESI72. DEPT-135 spectrum of 1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6', 7,7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12p
Figure ESI73. 1H-NMR spectrum of 1-methyl-1',5-dinitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12q

Figure ESI74. 13C-NMR spectrum of 1-methyl-1',5-dinitro-2'-(3,4-dimethoxyphenyl)-1',2',5',6',7', 7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12q

Figure ESI75. DEPT-135 spectrum of 1-methyl-1’,5-dinitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’, 7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12q

![DEPT-135 spectrum of 1-methyl-1’,5-dinitro-2’-(3,4-dimethoxyphenyl)-1’,2’,5’,6’,7’, 7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12q](image)

Figure ESI76. 1H-NMR spectrum of 1-methyl-1’,5-dinitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’, 6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12r

![1H-NMR spectrum of 1-methyl-1’,5-dinitro-2’-(3,4-methylenedioxyphenyl)-1’,2’,5’, 6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12r](image)
Figure ESI77. 13C-NMR spectrum of 1-methyl-1',5-dinitro-2'-{(3,4-methylenedioxyphenyl)-1',2',5', 6',7',7'a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12r

Figure ESI78. DEPT-135 spectrum of 1-methyl-1',5-dinitro-2'-(3,4-methylenedioxyphenyl)-1',2',5', 6',7',7'a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12r
Figure ESI79. 1H-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2,5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12s

Figure ESI80. 13C-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2,5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12s

Figure ESI81. DEPT-135 spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12s

![DEPT-135 spectrum](image1)

Figure ESI82. COSY spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12s

![COSY spectrum](image2)
Figure ESI83. HSQC spectrum of 6’-hydroxy-1-methyl-1’,5-dinitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12s

Figure ESI84. HMBC spectrum of 6’-hydroxy-1-methyl-1’,5-dinitro-2’-(3,4,5-trimethoxyphenyl)-1’,2’,5’,6’,7’,7a’-hexahydrospiro[indoline-3,3’-pyrrolizin]-2-one 12s
Figure ESI85. \(^1\)H-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t

![1H-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t](image)

Figure ESI86. \(^{13}\)C-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t

![\(^{13}\)C-NMR spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t](image)
Figure ESI87. DEPT-135 spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t

Figure ESI88. COSY spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'-(3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t

Figure ESI89. HSQC spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'- (3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t

Figure ESI90. HMBC spectrum of 6'-hydroxy-1-methyl-1',5-dinitro-2'- (3,4-methylenedioxy phenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12t
4. Copies of NOESY charts of the synthesized spirooxindoles 1'-nitro pyrrolizidines 12j and 12s.

Figure ESI91. NOESY spectrum of 5-chloro-1-methyl-1'-nitro-2'-(3,4,5-trimethoxyphenyl)-1',2',5',6',7',7a'-hexahydrospiro[indoline-3,3'-pyrrolizin]-2-one 12j.
5. Structural elucidation of spirooxindole 1'-nitropyrrrolizidine 12t through 1H, COSY and HMBC experiments.

The 1H-NMR experiment for compound 12t showed a general group of characteristic signals for the aromatic protons present in the isatin and the aryl moiety form the respective β-nitrostyrenes. While the coupling constants of protons from the pyrrolizidine ring, identified as H-1' (t, $J = 10.1$ Hz), H-2' (d, $J = 10.3$ Hz, 1H) and H-7a' (dd, $J = 16.7, 8.2$ Hz, 1H), established the trans- configuration between protons H-1' and H-2' and the cis-configuration within H-1' and H-7a', correlation corroborated by the H-H COSY experiment (Figure 3). Each methylene group in this ring displayed two groups of signals, for example: the protons H-5' presented a two pairs of doublet of doublets at 3.45 ppm ($J = 9.3, 3.4$ Hz, 1H), corresponding to the equatorial H-5', and at 2.88 ppm ($J = 9.3, 1.4$ Hz, 1H) for the axial H-5'. Likewise, the protons H-7' exhibit as well two pairs of doublet of doublets at 2.20 ppm ($J = 14.5, 8.3, 1.1$ Hz, 1H), for the axial proton H-7', and at 1.79 ppm ($J = 14.4, 7.2, 5.2$ Hz, 1H), corresponding to the equatorial proton H-7'. The correlation between these protons and their connectivity with the pyrrolizidine skeleton, as well as their interaction with proton H-6' found at 4.56 ppm (t, $J = 4.1$ Hz, 1H), were determined with H-H COSY and HMBC experiments. Finally, the hydroxyl group (-OH) appeared as a broad signal at 1.83 ppm.

Selected H-H COSY correlation (↔) and HMBC connectivity (→) for the pyrrolizidine core of 12t.

6. Photographic record of the phenotypic changes during the development of the zebrafish embryo treated with compound 12l after 96 hpf.

<table>
<thead>
<tr>
<th>Compound</th>
<th>96 hours post-fecundation, concentration in μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12l</td>
<td> 200 37.5 </td>
</tr>
<tr>
<td> 150 25 100 12.5 </td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td> 75 6.25 </td>
</tr>
<tr>
<td> 50 </td>
<td>LC₅₀ (μmol/L ± SEM) 419.59 ± 9.92</td>
</tr>
</tbody>
</table>

7. Photographic record of the phenotypic changes during the development of the zebrafish embryo treated with compound 12m after 96 hpf.

<table>
<thead>
<tr>
<th>Compound</th>
<th>96 hours post-fecundation, concentration in μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12m</td>
<td> 200 37.5 </td>
</tr>
<tr>
<td> 150 25 100 12.5 </td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td> 75 6.25 </td>
</tr>
<tr>
<td> 50 </td>
<td>LC₅₀ (μmol/L ± SEM) 211.09 ± 8.27</td>
</tr>
</tbody>
</table>
8. Photographic record of the phenotypic changes during the development of the zebrafish embryo treated with compound 12o after 96 hpf.

<table>
<thead>
<tr>
<th>Compound</th>
<th>48 hours post-fecundation, concentration in μM</th>
</tr>
</thead>
<tbody>
<tr>
<td>12o</td>
<td> 200</td>
</tr>
<tr>
<td></td>
<td> 150</td>
</tr>
<tr>
<td></td>
<td> 100</td>
</tr>
<tr>
<td>Control</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td> 50</td>
</tr>
<tr>
<td></td>
<td>LC₅₀ (μmol/L ± SEM)</td>
</tr>
</tbody>
</table>