Supporting Information

Observation by NMR of cationic Wheland-like intermediates in the deiodination of protected 1-iodonapthalene-2,4-diamines in acidic media

Elvis A. Twuma, Timothy J. Woodmana, Wenyi Wanga,b and Michael D. Threadgilla

a Address: Medicinal Chemistry, Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, BA2 7AY, UK., b Department of Pharmacy, Shandong University, China.

In the Supplementary Information, the numbering of the positions on the naphthalene rings follows strict IUPAC numbering.
Reactions monitored by NMR.

In a typical reaction, 11 (14.0 mg, 0.29 mmol) was dissolved in a mixture of CDCl₃ (0.15 mL) and trifluoroacetic acid (CF₃CO₂D or CF₃CO₂H) (0.45 mL) at 0°C. Following brief agitation of the sample with a vortex mixer to ensure dissolution and homogeneity of the sample, it was transferred to the NMR spectrometer, with the probe pre-cooled to 0°C. Following locking and shimming, data could be collected, typically within 3-4 minutes of mixing the sample. Where samples were monitored for extended times (days / weeks), the samples were stored in a laboratory which was regulated to 20 ± 1°C.

15: ¹H NMR (CDCl₃/CF₃CO₂H), 500.13 MHz, 273 K) δ 7.93-8.01 (2 H, m, 6,7-H₂), 8.05 (1 H, d, J 8.0 Hz, 5-H), 8.11 (1 H, s, 3-H), 8.42 (1 H, d, J 8.5 Hz, 8-H); ¹³C NMR (CDCl₃/ CF₃CO₂H, 125.77 MHz, 293 K) δ 101.44 (1-C), 116.90 (3-C), 120.96 (5-C), 126.61 (4a-C), 127.75 (4-C), 129.38 (2-C), 131.81 (6-C), 132.34 (7-C), 134.72 (8-C), 135.96 (8a-C).

Figure 1. ¹H NMR spectrum of 15 at 0°C, showing small amounts of 11 (*) formed.
16. 1H NMR (CDCl$_3$/CF$_3$CO$_2$H, 500.13 MHz, 293 K) δ 6.05 (1 H, s, 3-H), 6.51 (1 H, s, 1-H), 7.58 (1 H, t, J 7.8 Hz, 6-H), 7.70 (1 H, t, J 7.8 Hz, 7-H), 7.75 (1 H, d, J 7.8 Hz, 8-H), 7.84 (1 H, d, J 8.0 Hz, 5-H); 13C NMR (CDCl$_3$/CF$_3$CO$_2$H, 125.77 MHz, 293 K) δ 9.79 (1-C), 91.49 (3-C), 121.68 (4a-C), 124.16 (5-C), 129.93 (6-C), 131.48 (8-C), 135.01 (7-C), 141.25 (8a-C), 164.30 (4-C), 173.50 (2-C).

Figure 2. 1H NMR spectrum of 16 at 20°C, showing small residual amounts of 10 (*).
Figure 3. HSQC NMR spectrum of 16 at 20°C, showing the peak for CHI at δ 6.50 (1H) and δ 9.54 (13C).

Figure 4. 1H NMR spectrum of 17 with traces of 18 (*), following reaction of 11 with CF₃CO₂D / CDCl₃ at 0°C.
20. 1H NMR (CDCl$_3$/CF$_3$CO$_2$H, 500.13 MHz, 293 K) δ 7.88-7.99 (2 H, m, 6,7-H$_2$), 8.05 (1 H, s, 2-H), 8.10 (1 H, d, J 8.2 Hz, 8-H), 8.14 (1 H, d, J 7.7 Hz, 5-H), 8.28 (1 H, s, 1-H); 13C NMR (CDCl$_3$/CF$_3$CO$_2$H, 125.77 MHz, 293 K) δ 116.62 (2-C), 120.05 (8-C), 125.19 (3-C), 126.05 (4-C), 126.73 (4a-C), 129.87 (5-C), 130.57 (6-C), 131.27 (7-C), 134.29 (1-C), 134.33 (3-C).
Figure 6. 1H NMR spectrum of 20 and 21 (**) shortly after dissolution of 9 in CDCl$_3$/CF$_3$CO$_2$D at 0°C.

Figure 7. Expansion of Figure 6 to show aromatic region in more detail.
Figure 8. HSQC NMR spectrum of 20 and 21 showing CH$_2$ of the Wheland-type species at δ 4.13 (1H) and δ 33.27 (13C).

Figure 9. ^1H NMR spectrum of 22 and 23 (*) shortly after dissolution of 4 in CDCl$_3$/CF$_3$CO$_2$D at 0°C.
Figure 10. Expansion of Figure 9 to show aromatic region.

Figure 11. 1H NMR spectrum of 22 and 23 (*) 48 h after dissolution of 9 in CDCl₃/CF₃CO₂D.
Figure 12. 1H expansion of Figure 11 to show aromatic region. Note the diminished intensity of the singlets at δ 8.28 and δ 8.05 due to exchange of H with D at 1-H and 3-H in 22.

21: 1H NMR (CDCl$_3$/CF$_3$CO$_2$H, 500.13 MHz, 293 K) δ 4.13 (2 H, s, 4-H$_2$), 6.01 (1 H, s, 2-H), 7.55 (1 H, d, J 7.9 Hz, 5-H), 7.61 (1 H, t, J 7.5 Hz, 7-H), 7.74 (1 H, t, J 7.5 Hz, 6-H), 7.87 (1 H, d, J 7.9 Hz, 8-H); 13C NMR (CDCl$_3$/CF$_3$CO$_2$H, 125.77 MHz, 293 K) δ 33.27 (4-C), 93.58 (2-C), 123.02 (8a-C), 123.22 (8-C), 128.85 (7-C), 129.29 (5-C), 134.31 (6-C), 136.52 (4a-C), 165.73 (1-C), 171.87 (3-C).

27: 1H (500.13 MHz, CDCl$_3$/CF$_3$CO$_2$H, 273 K) δ 7.84 (1 H, t, J 7.5 Hz, 6-H), 7.88 (1 H, t, J 7.5 Hz, 1H, 7-H), 7.97 (1 H, d, J 8.2 Hz, 5-H), 8.44 (1 H, d, J 8.6 Hz, 8-H), 8.57 (1 H, s, 3-H); 13C NMR (125.77 MHz, CDCl$_3$/CF$_3$CO$_2$H, 273 K) δ 99.94 (1-C), 116.65 (q, J 108.8 Hz, CF$_3$), 116.71 (3-C), 120.59 (5-C), 125.48 (4a-C), 126.84 (4-C), 130.40 (6-C), 131.40 (7-C), 133.71 (2-C), 134.58 (8-C), 135.68 (8a-C), 158.24 (q, J 40.3 Hz, C=O).
Figure 13. 1H NMR spectrum of 27 in CDCl$_3$/CF$_3$CO$_2$D.

Figure 14. 1H NMR spectrum of 29 in CDCl$_3$/CF$_3$CO$_2$D.
29. 1H (500.13 MHz, CDCl$_3$/CF$_3$CO$_2$H, 273 K) δ 7.75-7.81 (2 H, m, 6,7-H$_2$), 7.95 (1 H, m, 8-H), 8.04 (1 H, m, 5-H), 8.18 (1 H, d, J 1.9 Hz, 2-H), 8.29 (1 H, s, 4-H), 9.31 (NH); 13C NMR (125.77 MHz, CDCl$_3$/CF$_3$CO$_2$H, 273 K) δ 116.10 (q, J 103.7 Hz, CF$_3$), 116.48 (2-C), 119.63 (8-C), 123.08 (4-C), 125.15 (8a-C), 125.91 (1-C), 129.74 (6-C), 129.79 (5-C), 129.80 (7-C), 131.52 (3-C), 134.81 (4a-C), 157.58 (q, J 39.1 Hz, C=O).

![Figure 15](image-url)

Figure 15. 1H NMR spectrum of 29 and 30 (*) 48 h after dissolution of 26 in CDCl$_3$/CF$_3$CO$_2$D.
Spectra of synthesised compounds

Figure 16. 1H NMR spectrum of 7 in (CD$_3$)$_2$SO.
Figure 17. 13C NMR spectrum of 7 in (CD$_3$)$_2$SO.

Figure 18. HSQC NMR spectrum of 7 in (CD$_3$)$_2$SO.
Figure 19. HMBC NMR spectrum of 7 in (CD$_3$)$_2$SO.

Figure 20. 1H-1H COSY NMR spectrum of 7 in (CD$_3$)$_2$SO.
Figure 21. 1H-1H NOESY NMR spectrum of 7 in (CD$_3$)$_2$SO.

Figure 22. 1H NMR spectrum of 8 in (CD$_3$)$_2$SO.
Figure 23. 13C NMR spectrum of 8 in (CD$_3$)$_2$SO.

Figure 24. HSQC NMR spectrum of 8 in (CD$_3$)$_2$SO.
Figure 25. HMBC NMR spectrum of 8 in (CD$_3$)$_2$SO.

Figure 26. 1H NMR spectrum of 10 in CDCl$_3$.
Figure 27. 13C NMR spectrum of 10 in CDCl$_3$.

Figure 28. HSQC NMR spectrum of 10 in CDCl$_3$.
Figure 29. HMBC NMR spectrum of 10 in CDCl3.

Figure 30. 1H NMR spectrum of 11 in CDCl3.
Figure 31. Expansion of part of 1H NMR spectrum of 11 in CDCl$_3$.

Figure 32. Expansion of part of 1H NMR spectrum of 11 in CDCl$_3$.
Figure 33. 13C NMR spectrum of 11 in CDCl$_3$.

Figure 34. HSQC NMR spectrum of 11 in CDCl$_3$.
Figure 35. HMBC NMR spectrum of 11 in CDCl₃.

Figure 36. Expansion of part of HMBC NMR spectrum of 11 in CDCl₃.
Figure 37. 1H-1H COSY NMR spectrum of 11 in CDCl$_3$.

Figure 38. 1H-1H NOESY NMR spectrum of 11 in CDCl$_3$.
Figure 39. 1H NMR spectrum of 24 in (CD$_3$)$_2$SO.

Figure 40. Expansion of part of 1H NMR spectrum of 24 in (CD$_3$)$_2$SO.
Figure 41. 13C NMR spectrum of 24 in (CD$_3$)$_2$SO.

Figure 42. Expansion of part of 13C NMR spectrum of 24 in (CD$_3$)$_2$SO.
Figure 43. HSQC NMR spectrum of 24 in (CD$_3$)$_2$SO.

Figure 44. HMBC NMR spectrum of 24 in (CD$_3$)$_2$SO.
Figure 45. Expansion of part of HMBC NMR spectrum of 24 in (CD$_3$)$_2$SO.

Figure 46. 'H-'H NOESY NMR spectrum of 24 in (CD$_3$)$_2$SO.
Figure 47. 19F NMR spectrum of 24 in (CD$_3$)$_2$SO.

Figure 48. 1H NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 49. Expansion of part of 1H NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 50. Expansion of part of 1H NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 51. 13C NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 52. Expansion of part of 13C NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 53. HSQC NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 54. Expansion of part of HSQC NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 55. HMBC NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 56. Expansion of part of HMBC NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 57. 1H-1H NOESY NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 58. Expansion of part of 1H-1H NOESY NMR spectrum of 25 in (CD$_3$)$_2$SO.
Figure 59. 19F NMR spectrum of 25 in (CD$_3$)$_2$SO.

Figure 60. 1H NMR spectrum of 26 in (CDCl$_3$).
Figure 61. Expansion of part of 1H NMR spectrum of 26 in CDCl$_3$.

Figure 62. 13C NMR spectrum of 26 in CDCl$_3$.
Figure 63. Expansion of part of 13C NMR spectrum of 26 in CDCl$_3$.

Figure 64. HSQC NMR spectrum of 26 in CDCl$_3$.
Figure 65. Expansion of part of HSQC NMR spectrum of 26 in CDCl₃.

Figure 66. HMBC NMR spectrum of 26 in CDCl₃.
Figure 67. Expansion of part of HMBC NMR spectrum of 26 in CDCl$_3$.

Figure 68. 19F NMR spectrum of 26 in CDCl$_3$.