Supporting Information

DABCO-Promoted synthesis of pyrazoles from tosylhydrazones and nitroalkenes

Meng Tang*, Wen Zhang and Yuanfang Kong

School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China E-mail: tangmeng@lzu.edu.cn

Table of Contents

General Information	S2
General Procedure for Preparation of Tosylhydrazones (1a-1e) and Ni (2a-2g)	troalkenes S2
Procedure for the Synthesis of Pyrazoles 3a-3t and Analytic Data	S2
X-Ray Ellipsoid Plots of 3a	S7
Reference	S7
Copies of ¹ H and ¹³ C Spectra of Products	S8

General Information

For product purification by flash column chromatography, silica gel (200-300 mesh) and light petroleum ether (bp. 60-90 °C) are used. All organic extracts were dried over anhydrous MgSO₄. ¹H and ¹³C NMR spectra were taken on a Varian Mercury-300 or 400 MHz spectrometer. The HRMS data were determined on a Bruker Daltonics APEXII 47e FT-ICR spectrometer.

General Procedure for Preparation of Tosylhydrazones (1a-1e) and Nitroalkenes (2a-2g)

 R^{1} + TsNHNH₂ MeOH, rt R¹ H

Tosylhydrazones (**1a-1e**) were prepared from TsNHNH₂ and corresponding aldehydes by the known procedure.¹ To a rapidly stirred suspension of TsNHNH₂ (1.05 equiv) in methanol was added aldehyde (1.0 equiv) dropwise (solid reagents were added portion-wise). A mildly exothermic reaction ensued and the hydrazide dissolved. Within 5-10 min the tosylhydrazone began to precipitate. After approximately 30 min, the mixture was cooled to 0 $^{\circ}$ C and the product was collected by filtration, washed with cooled methanol. All of the obtained solids could be recrystallized from methanol or used without further purification.

$$R^3$$
-CHO + R^2 NO₂ $\xrightarrow{\text{Ref. 2-4}}$ R^3 $\xrightarrow{R^2}$ NO₂
2a-2g

Nitroalkenes (**2a-2g**) were prepared from corresponding aldehydes and nitroalkanes according to references.²⁻⁴

Procedure for the Synthesis of Pyrazoles 3a-3t and Analytic Data

A mixture of tosylhydrazone **1a** (110 mg, 0.4 mmol), nitroalkene **2a** (120 mg, 0.8 mmol), K_2CO_3 (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 8.5 hours. The product was extracted with CH_2Cl_2 and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3a** as a white crystalline solid (72 mg, 82% yield) and **4** as a white crystalline solid (14 mg, 16% yield).

For **3a**: **mp** 181-183 °C; ¹**H NMR** (300 MHz, CDCl₃) $\delta = 6.77$ (s, 1H), 7.24-7.31 (m, 6H), 7.67 (d, J = 6.6 Hz, 4H), 11.70 (brs, 1H) ppm; ¹³C **NMR** (75 MHz, CDCl₃) $\delta = 100.0$, 125.6, 128.1, 128.8, 131.1, 148.6 ppm.

Ph

For **4**: **mp** 140-142 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 7.22-7.25 (m, 1H), 7.26-7.34 (m, 7H), 7.46-7.49 (m, 2H), 7.61 (s, 1H), 11.36 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 119.9, 126.6, 128.2, 128.4, 128.5, 128.6, 131.3, 133.0, 135.0, 143.6 ppm.

A mixture of tosylhydrazone **1a** (110 mg, 0.4 mmol), nitroalkene **2b** (112 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 12 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3b** as a yellow crystalline solid (64 mg, 76% yield). **mp** 106-107 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 6.38$ (dd, J = 3.2, 1.6 Hz, 1H), 6.57 (d, J = 3.2 Hz, 1H), 6.68 (s, 1H), 7.25-7.35 (m, 4H), 7.64-7.66 (m, 2H) ppm; ¹³C NMR (100 MHz, CDCl₃) $\delta = 99.2$, 106.2, 111.3, 125.6, 128.1, 128.7, 130.7, 141.0, 141.9, 146.9, 147.9 ppm; **HRMS** (ESI): Calcd for C₁₃H₁₁N₂O [*M*+H]⁺: 211.0866, found: 211.0863.

A mixture of tosylhydrazone **1a** (110 mg, 0.4 mmol), nitroalkene **2c** (131 mg, 0.8 mmol), K_2CO_3 (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4.5 hours. The product was extracted with CH_2Cl_2 and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3c** as a white crystalline solid (75 mg, 80% yield). **mp** 171-172 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.14 (s, 3H), 7.30-7.33 (m, 2H), 7.37-7.39 (m, 2H), 10.80 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) δ = 10.8, 117.9, 126.4, 127.7, 128.0, 128.3, 130.0, 132.2, 133.6, 141.9, 146.2 ppm; **HRMS** (ESI): Calcd for C₁₆H₁₅N₂ [*M*+H]⁺: 235.1230, found: 235.1229.

A mixture of tosylhydrazone **1a** (110 mg, 0.4 mmol), nitroalkene **2d** (123 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 7 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3d** as a yellow crystalline solid (48 mg, 53% yield). **mp** 103-104 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.15 (s, 3H), 6.11 (d, *J* = 3.2 Hz, 1H), 6.37 (s, 1H), 7.24-7.31 (m, 3H), 7.38 (s, 1H), 7.47 (d, *J* = 3.2 Hz, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 11.2, 107.1, 108.6, 110.8, 128.2, 128.3, 132.2, 141.2, 142.4, 147.1, 147.8 ppm; **HRMS** (ESI): Calcd for C₁₄H₁₃N₂O [*M*+H]⁺: 225.1022, found: 225.1020.

HN-N Ph 3e

A mixture of tosylhydrazone **1a** (110 mg, 0.4 mmol), nitroalkene **2e** (81 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 3.5 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3e** as a white crystalline solid (50 mg, 72% yield). **mp** 78-80 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.11 (s, 3H), 2.15 (s, 3H), 7.31 (d, *J* = 7.4 Hz, 1H), 7.38 (d, *J* = 7.4 Hz, 2H), 7.55 (d, *J* = 7.6 Hz, 2H), 9.78 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 8.8, 10.5, 110.5, 127.4, 128.5, 132.7, 142.6, 146.0 ppm; **HRMS** (ESI): Calcd for C₁₁H₁₃N₂ [*M*+H]⁺: 173.1073, found: 173.1071.

A mixture of tosylhydrazone **1b** (128 mg, 0.4 mmol), nitroalkene **2a** (100 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3f** as a yellow crystalline solid (77 mg, 65% yield). **mp** 190-192 °C; ¹**H NMR** (400 MHz, d₆-acetone) $\delta = 3.86$ (s, 3H), 7.05 (d, J = 8.4 Hz, 2H), 7.22 (s,

1H), 7.80 (d, J = 8.4 Hz, 2H), 8.16 (d, J = 8.4 Hz, 2H), 8.30 (d, J = 8.4 Hz, 2H) ppm; ¹³C NMR (100 MHz, d₆-acetone) $\delta = 55.6$, 100.9, 115.2, 123.5, 124.8, 126.7, 127.6, 140.6, 147.9, 160.9 ppm; **HRMS** (ESI): Calcd for C₁₆H₁₄N₃O₃ [*M*+H]⁺: 296.1030, found: 296.1028.

A mixture of tosylhydrazone **1b** (128 mg, 0.4 mmol), nitroalkene **2b** (112 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3g** as a yellow crystalline solid (91 mg, 89% yield). **mp** 261-263 °C; ¹**H NMR** (400 MHz, d₆-DMSO) δ = 6.63 (s, 1H), 6.87 (s, 1H), 7.18 (s, 1H), 7.80 (s, 1H), 8.11 (s, 2H), 8.27 (d, *J* = 6.4 Hz, 2H), 13.77 (s, 1H) ppm; ¹³**C NMR** (100 MHz, d₆-DMSO) δ = 100.0, 107.2, 111.8, 124.1, 125.9, 135.7, 139.7, 143.1, 144.2, 146.5, 149.1 ppm; **HRMS** (ESI): Calcd for C₁₃H₁₀N₃O₃ [*M*+H]⁺: 256.0717, found: 256.0716.

A mixture of tosylhydrazone **1b** (128, 0.4 mmol), nitroalkene **2d** (123 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3h** as a yellow crystalline solid (59 mg, 55% yield). **mp** 138-141 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.33 (s, 3H), 6.24 (d, *J* = 3.2 Hz, 1H), 6.46-6.47 (m, 1H), 7.44 (s, 1H), 7.67 (d, *J* = 8.8 Hz, 2H), 8.17 (d, *J* = 8.8 Hz, 2H), 8.86 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) δ = 10.8, 108.5, 109.6, 111.1, 123.6, 128.5, 138.9, 141.4, 142.1, 146.6, 147.4 ppm; **HRMS** (ESI): Calcd for C₁₄H₁₂N₃O₃ [*M*+H]⁺: 270.0873, found: 270.0868.

A mixture of tosylhydrazone **1c** (122 mg, 0.4 mmol), nitroalkene **2c** (131 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3i** as a white crystalline solid (65 mg, 61% yield). **mp** 170-172 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.19 (s, 3H), 3.75 (s, 3H), 6.74 (d, *J* = 8.8 Hz, 2H), 7.19 (d, *J* = 7.2 Hz, 2H), 7.23-7.34 (m, 5H), 10.52 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 11.1, 55.1, 113.8, 117.4, 124.5, 126.4, 128.3, 129.2, 130.0, 133.8, 142.3, 145.6, 159.2 ppm; **HRMS** (ESI): Calcd for C₁₇H₁₇N₂O [*M*+H]⁺: 265.1335, found: 265.1333.

A mixture of tosylhydrazone **1c** (122 mg, 0.4 mmol), nitroalkene **2a** (100 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 12 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3j** as a white crystalline solid (80 mg, 68% yield). **mp** 150-151 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.15 (s, 3H), 3.75 (s, 3H), 3.81 (s, 3H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.87 (d, *J* = 8.8 Hz, 2H), 7.10 (d, *J* = 8.8 Hz, 2H), 7.29 (d, *J* = 8.8 Hz, 2H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 11.0, 55.07, 55.13, 113.7, 113.8, 116.9, 124.6, 126.0, 129.1, 131.1, 142.2, 145.4, 158.1, 159.1 ppm; **HRMS** (ESI): Calcd for C₁₈H₁₉N₂O₂ [*M*+H]⁺: 295.1441, found: 295.1442.

A mixture of tosylhydrazone **1c** (122 mg, 0.4 mmol), nitroalkene **2e** (81 mg, 0.8 mmol), K_2CO_3 (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH_2Cl_2 and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3k** as a yellow oil (41 mg, 51% yield). ¹**H NMR** (400 MHz, CDCl₃) δ = 2.09 (s, 3H), 2.18 (s, 3H), 3.82 (s, 3H), 6.90 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 9.51 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 8.7, 10.6, 55.2, 110.1, 113.9, 125.0, 128.6, 142.8, 145.3, 159.1 ppm; **HRMS** (ESI): Calcd for C₁₂H₁₅N₂O [*M*+H]⁺: 203.1179, found: 203.1179.

A mixture of tosylhydrazone **1d** (124 mg, 0.4 mmol), nitroalkene **2a** (120 mg, 0.8 mmol), K_2CO_3 (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3l** as a white crystalline solid (80 mg, 78% yield). **mp** 114-115 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 6.97$ (s, 1H), 7.18-7.25 (m, 2H), 7.28-7.37 (m, 3H), 7.43 (d, J = 7.2 Hz, 1H), 7.61-7.63 (m, 1H), 7.73 (d, J = 7.6 Hz, 2H), 10.77 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 103.6$, 125.7, 127.0, 128.1, 128.8, 129.3, 129.8, 130.2, 130.5, 131.5, 131.8, 145.1, 148.6 ppm; **HRMS** (ESI): Calcd for C₁₅H₁₂N₂Cl [*M*+H]⁺: 255.0684, found: 255.0684.

A mixture of tosylhydrazone **1d** (124 mg, 0.4 mmol), nitroalkene **2b** (112 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 10 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3m** as a yellow crystalline solid (81 mg, 83% yield). **mp** 114-116 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 6.47 (s, 1H), 6.68 (d, *J* = 3.2 Hz, 1H), 6.91 (s, 1H), 7.26-7.30 (m, 2H), 7.44-7.47 (m, 2H), 7.64-7.66 (m, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 103.0, 106.4, 111.4, 127.0, 129.4, 130.3, 130.5, 131.9, 140.9, 142.0, 144.5, 147.0 ppm; **HRMS** (ESI): Calcd for C₁₃H₁₀N₂ClO [*M*+H]⁺: 245.0476, found: 245.0479.

A mixture of tosylhydrazone **1d** (124 mg, 0.4 mmol), nitroalkene **2c** (131 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3n** as a white crystalline solid (56 mg, 52% yield). **mp** 94-95 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.13 (s, 3H), 7.07 (d, *J* = 7.2 Hz, 2H), 7.15-7.25 (m, 5H), 7.31-7.35 (m, 2H), 11.00 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) δ = 10.7, 119.3, 126.1, 126.5, 128.2, 129.0, 129.5, 129.8, 132.0, 132.3, 133.4, 134.0, 140.3, 144.7 ppm; **HRMS** (ESI): Calcd for C₁₆H₁₄N₂Cl [*M*+H]⁺: 269.0840, found: 269.0842.

A mixture of tosylhydrazone **1d** (124 mg, 0.4 mmol), nitroalkene **2e** (81 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3o** as a white crystalline solid (51 mg, 61% yield). **mp** 113-115 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 1.90$ (s, 3H), 2.05 (s, 3H), 7.24-7.29 (m, 2H), 7.31-7.35 (m, 1H), 7.43 (d, J = 7.6 Hz, 1H), 10.85 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) $\delta = 8.3$, 10.1, 112.3, 126.5, 129.4, 129.7, 131.9, 133.8, 141.0, 144.8 ppm; **HRMS** (ESI): Calcd for C₁₁H₁₂N₂Cl [*M*+H]⁺: 207.0684, found: 207.0681.

A mixture of tosylhydrazone **1e** (142 mg, 0.4 mmol), nitroalkene **2a** (120 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3p** as a white crystalline solid (97 mg, 81% yield). **mp** 124-126 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 6.94$ (s, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.23-7.38 (m, 4H), 7.54 (d, J = 7.6 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 7.2 Hz, 2H), 8.94 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) $\delta = 103.7$, 121.7, 125.7, 127.5, 128.1, 128.8, 129.6, 130.9, 131.3, 132.1, 133.7, 146.7, 148.3 ppm; **HRMS** (ESI): Calcd for C₁₅H₁₂N₂Br [*M*+H]⁺: 299.0178, found: 299.0174.

A mixture of tosylhydrazone **1e** (142 mg, 0.4 mmol), nitroalkene **2b** (112 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 8 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3q** as a yellow crystalline solid (81 mg, 70% yield). **mp** 113-116 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 6.48$ (dd, J = 2.8, 1.6 Hz, 1H), 6.71 (d, J = 3.2 Hz, 1H), 6.87 (s, 1H), 7.20-7.26 (m, 1H), 7.35 (t, J = 7.2 Hz, 1H), 7.45 (s, 1H), 7.59 (dd, J = 7.6, 1.6 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 8.31 (brs, 1H) ppm; ¹³C **NMR** (100 MHz, CDCl₃) $\delta = 103.1$, 106.4, 111.4, 121.7, 127.5, 129.7, 130.9, 131.7, 133.7, 140.7, 142.0, 146.0, 147.0 ppm; **HRMS** (ESI): Calcd for C₁₃H₁₀N₂BrO [*M*+H]⁺: 288.9971, found: 288.9974.

A mixture of tosylhydrazone **1e** (142 mg, 0.4 mmol), nitroalkene **2c** (131 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 4 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3r** as a white crystalline solid (75 mg, 60% yield). **mp** 116-119 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.13 (s, 3H), 7.07 (d, *J* = 7.2 Hz, 2H), 7.15-7.25 (m, 5H), 7.30-7.32 (m, 1H), 7.55 (d, *J* = 7.6 Hz, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) δ = 10.7, 119.1, 124.1, 126.1, 127.1, 128.2, 129.1, 129.7, 132.5, 132.9, 133.3, 134.1, 140.2, 146.3 ppm; **HRMS** (ESI): Calcd for C₁₆H₁₄N₂Br [*M*+H]⁺: 313.0335, found: 313.0331.

A mixture of tosylhydrazone **1e** (142 mg, 0.4 mmol), nitroalkene **2d** (123 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 5 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3s** as a white crystalline solid (75 mg, 62% yield). **mp** 115-117 °C; ¹**H NMR** (400 MHz, CDCl₃) δ = 2.13 (s, 3H), 5.75 (d, *J* = 2.8 Hz, 1H), 6.26 (d, *J* = 1.2 Hz, 1H), 7.25-7.28 (m, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H) ppm; ¹³C NMR (100 MHz, CDCl₃) δ = 10.9, 105.0, 110.1, 110.7, 124.4, 127.2, 130.0, 132.2, 132.8, 134.6, 139.4, 140.59, 140.61, 148.3 ppm; **HRMS** (ESI): Calcd for C₁₄H₁₂N₂BrO [*M*+H]⁺: 303.0128, found: 303.0131.

A mixture of tosylhydrazone **1e** (142 mg, 0.4 mmol), nitroalkene **2e** (81 mg, 0.8 mmol), K₂CO₃ (56 mg, 0.4 mmol) and DABCO (27 mg, 0.24 mmol) in THF (4 ml) were stirred under reflux temperature for 5 hours. The product was extracted with CH₂Cl₂ and the organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated *in vacuo*. Purification by chromatography on silica gel afforded **3t** as a white crystalline solid (65 mg, 64% yield). **mp** 116-118 °C; ¹**H NMR** (400 MHz, CDCl₃) $\delta = 1.90$ (s, 3H), 2.09 (s, 3H), 7.20-7.26 (m, 1H), 7.32 (d, *J* = 4.4 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 1H), 9.98 (brs, 1H) ppm; ¹³**C NMR** (100 MHz, CDCl₃) $\delta = 8.3$, 10.2, 112.2, 123.9, 127.1, 129.6, 132.1, 132.9, 134.1, 141.2, 146.2 ppm; **HRMS** (ESI): Calcd for C₁₁H₁₂N₂Br [*M*+H]⁺: 251.0178, found: 251.0180.

X-Ray Ellipsoid Plots of 3a

The structure of **3a** was unambiguously established by NMR and single-crystal X-ray analysis. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC 939872

Reference

1. V. K. Aggarwal, E. Alonso, I. Bae, G. Hynd, K. M. Lydon, M. J. Palmer, M. Patel, M. Porcelloni, J. Richardson, R. A. Stenson, J. R. Studley, J.-L. Vasse, C. L. Winn, *J. Am. Chem. Soc.* **2003**, *125*, 10926.

2. J. G. Greger, S. J. P. Yoon-Miller, N. R. Bechtold, S. A. Flewelling, J. P. MacDonald, C. R. Downey, E. A. Cohen, E. T. Pelkey, *J. Org. Chem.* **2011**, *76*, 8203.

3. G. Vallejos, A. Fierro, M. C. Rezende, S. Sepúlveda-Bozab, M. Reyes-Parada, *Bioorg. Med. Chem.* 2005, 13, 4450.

4. E. Dumez, R. Faure, J.-P. Dulcère, Eur. J. Org. Chem. 2001, 2577.

Copies of ¹H and ¹³C Spectra of Products

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is © The Royal Society of Chemistry 2013

.

7.662 7.653 7.639 7.474

-7.459 -7.450 -7.296 -7.296 -7.287 -7.282 -7.282 -7.272 -6.907 -6.687 -6.679 -6.470

_0.000

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is The Royal Society of Chemistry 2013

