Design, Synthesis and Characterization of Novel Inhibitors Against
Mycobacterial β-Ketoacyl CoA Reductase FabG4

Deb Ranjan Banerjee, Debajyoti Dutta, Baisakhee Saha, Sudipta Bhattacharyya, Amit K. Das* and Amit Basak*

Supporting Information

CONTENTS

S1. NMR spectra of selected compounds (pages 2 - 16)
S2. Mass spectra of final compounds (pages 17 – 18)
S3. HPLC traces of the synthesized final compounds (page 19)
S5. Secondary plots of inhibition kinetics (page 20)
S6. Images of REMA assay (page 20)
S7. Details interaction from docking studies with distances (pages 21 – 23)
S8. A typical plot of absorbance vs time with increasing concentration of inhibitor (Compound 4) in presence of substrate acetoacetyl CoA (positive control) (page 24)
S1. NMR spectra of selected compounds

Compound 6: 1H NMR (CDCl$_3$, 400 MHz) spectrum
Compound 8: 1H NMR (CDCl$_3$, 400 MHz) spectrum

Compound 10: 1H NMR (CDCl$_3$, 200 MHz) spectrum
Compound 10: 13C NMR (CDCl$_3$, 50 MHz) spectrum

Compound 11: 1H NMR (CDCl$_3$, 400 MHz) spectrum
Compound 11: 13C NMR (CDCl$_3$, 100 MHz) spectrum

![Compound 11: 13C NMR (CDCl$_3$, 100 MHz) spectrum](image)

Compound 12: 1H NMR (CDCl$_3$, 200 MHz) spectrum

![Compound 12: 1H NMR (CDCl$_3$, 200 MHz) spectrum](image)
Compound 12: 13C NMR (CDCl$_3$, 50 MHz) spectrum

Compound 13: 1H NMR (CDCl$_3$, 200 MHz) spectrum

Compound 13: 1H NMR (CDCl$_3$, 50 MHz) spectrum
Compound 16: 1H NMR (CDCl$_3$, 200 MHz) spectrum
Compound 16: 13C NMR (CDCl$_3$, 50 MHz) spectrum

Compound 14: 1H NMR (CDCl$_3$, 400 MHz) spectrum
Compound 14: 13C NMR (CDCl$_3$, 100 MHz) spectrum

Compound 15: 1H NMR (CDCl$_3$, 400 MHz) spectrum
Compound 15: 13C NMR (CDCl$_3$, 100 MHz) spectrum

Compound 17: 1H NMR (CDCl$_3$, 400 MHz) spectrum
Compound 17: 13C NMR (CDCl$_3$, 100 MHz) spectrum

Compound 19: 1H NMR (CDCl$_3$, 400 MHz) spectrum

Compound 19: 13C NMR (CDCl$_3$, 100 MHz) spectrum
Compound 1: 1H NMR (Acetone-d_6, 400 MHz) spectrum
Compound 1: 13C NMR (Acetone-d_6, 100 MHz) spectrum

Compound 1: DEPT-135 NMR (Acetone-d_6, 100 MHz) spectrum
Compound 2: 1H NMR (Acetone-d_6, 400 MHz) spectrum

Compound 2: 13C NMR (Acetone-d_6, 100 MHz) spectrum
Compound 2: DEPT-135 NMR (Acetone-d$_6$, 100 MHz) spectrum

Compound 3: 1H NMR (Acetone-d$_6$, 400 MHz) spectrum
Compound 3: 13C NMR (Acetone-d_6, 100 MHz) spectrum

Compound 4: 1H NMR (Acetone-d_6, 400 MHz) spectrum
Compound 4: 13C NMR (Acetone-d$_6$, 100 MHz) spectrum

S2. Mass spectra of final compounds

![Mass spectrum of Compound 1](image1)

Compound 1: LCMS mass spectrum

![Mass spectrum of Compound 2](image2)
Compound 2: LCMS mass spectrum

![LCMS mass spectrum of Compound 2](image)

Compound 3: HRMS mass spectrum

![HRMS mass spectrum of Compound 3](image)
Compound 4: HRMS mass spectrum

S3. HPLC traces of the synthesized final compounds

HPLC trace of compound 1, Eluent: 100% methanol, Flow rate: 1 ml/min, Ret. Time: 5.49 min

HPLC trace of compound 2, Eluent: 100% methanol, Flow rate: 0.5 ml/min, Ret. Time: 9.06 min

HPLC trace of compound 3, Eluent: 100% methanol, Flow rate: 1 ml/min, Ret. Time: 10.26 min
HPLC trace of 4

HPLC trace of compound 4, Eluent: 100% methanol, Flow rate: 1 ml/min, Ret. Time: 9.66 min

S5. Secondary plots of inhibition kinetics

Compound 1 (Competitive Inhibitor)

Compound 2 (Mixed Inhibitor)

S6. Images of REMA assay

Resazurin (Blue) → Resorufin (Pink)

Reduction by viable cell
Resazurin assay plate. Pink colour indicates growth and blue indicates inhibition. Row A = only media, negative control; Row B = only culture, growth control; Row C = culture + INH, positive control; Row D = culture + compound 2; Row E = culture + compound 1.

S7. Details interaction from docking studies with distances

Compound 1:

<table>
<thead>
<tr>
<th>A-subsite of NADH binding region</th>
<th>P-subsite of NADH binding region</th>
<th>N-subsite of NADH binding region</th>
<th>Catalytic tetrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Val268 (H-bond, 3.7 Å)</td>
<td>Gly297 (H-bond, 2.5 Å)</td>
<td>Ser346 (H-bond, 2.8 Å)</td>
<td>Lys364 (H-bond, 2.9 Å)</td>
</tr>
<tr>
<td>Leu26 (H-bond, 3.7 Å)</td>
<td>Thr299 (H-bond, 3.3 Å)</td>
<td>Ser346 (H-bond, 2.6 Å)</td>
<td></td>
</tr>
<tr>
<td>Gly220 (H-bond, 2.7 Å)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compound 1 totally competes at all three binding subsites of NADH binding region; supports that compound 1 is a competitive inhibitor.
Compound 2:

Compound 2 with interacting residues (distances in Å)

<table>
<thead>
<tr>
<th>A-subsite of NADH binding region</th>
<th>P-subsite of NADH binding region</th>
<th>N-subsite of NADH binding region</th>
<th>Loop I</th>
<th>Catalytic tetrad</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>Ser346 (H-bond, 2.0 Å)</td>
<td>Arg300 (H-bond, 3.3 Å)</td>
<td>Ser347 (H-bond, 3.4 Å)</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>Gly391 (H-bond, 3.0 Å)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Compound 2 mainly interacts with catalytic tetrad and loop I; It can bind with free enzyme as well as enzyme-NADH complex resulting mixed inhibition.
Compound 3:

Compound 4:
A typical kinetic plot of absorbance vs time with increasing concentration of inhibitor (compound 4) in presence of substrate acetoacetyl CoA (positive control).