Copper-catalyzed formation of N,N-dimethyl benzamide from nitrile and DMF under O$_2$ atmosphere

Chenxu Hua, Xufei Yana, Xiangge Zhou,a& Zhengkai Lia*

[a] Institute of Homogeneous Catalysis, College of Chemistry, Sichuan University, Chengdu 610041, China
[b] Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

E-mail: zhengkaili@scu.edu.cn
Fax: +86-28-85412026

Supplementary Information

Table of Contents

General methods
General procedure
Reaction pathway studies
Characterization
NMR spectra of compounds
References
General Methods

All reagents were purchased from commercial suppliers and used without further purification. Column chromatography was carried out with silica gel (200-300 mesh) eluting with ethyl acetate and petroleum ether. Thin layer chromatography was carried out using Merck silica gel GF254 plates. 1H NMR and 13C NMR (400 MHz and 100 MHz, respectively) spectra were recorded in CDCl$_3$. Chemical shifts are reported in ppm using TMS as internal standard. Gas chromatography/Mass spectra (GC/MS) were recorded on an Agilent Technologies 6890N instrument with an Agilent 5973N mass detector (EI) and a HP5-MS 30 m × 0.25 mm capillary apolar column (Stationary phase: 5% diphenyldimethylpolysilox-ane film, 0.25μm).

General procedure for the catalytic reaction

Nitrile (1 mmol), DMF (2 mL), Cu$_2$O (0.1 mmol), 1,10-phenanthroline (0.2 mmol) and TsOH (1 mmol) were added into a sealed tube. The reaction mixture was stirred at 140 °C for 24 h. After completion of the reaction, the reaction mixture was allowed to cool to room temperature, quenched with water, and extracted with ethyl acetate. The organic layer was then dried over anhydrous MgSO$_4$ and the solvent was removed in vacuo. The residue was finally purified by column chromatography on silica gel using petroleum ether-ethyl acetate mixture as eluent.
Reaction pathway studies:

To gain insight into the mechanism of the reaction, benzyl cyanide was treated with DMF under the optimized conditions with the addition of 2,2,6,6-tetramethylpiperidin-1-yloxy (TEMPO). The product was also observed with similar yield. Meanwhile, DMF was also treated with TEMPO under the optimized conditions in the absence of benzyl cyanide and provided no corresponding radical products, which indicates that the reaction might not go through a radical process.
Characterization data

N,N-dimethylbenzamide (3a)1

$\text{\includegraphics{characterization_data}}$

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a white solid (83% yield). 1H NMR (400 MHz, CDCl$_3$): 2.85 (s, 3H), 2.99 (s, 3H), 7.28-7.29 (m, 5H). 13C NMR (100 MHz, CDCl$_3$): 35.10, 39.36, 126.79, 128.13, 129.33, 136.01, 171.45.

$N,N,4$-trimethylbenzamide (3b)1

$\text{\includegraphics{characterization_data}}$

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a colorless oil (81% yield). 1H NMR (400 MHz, CDCl$_3$): 2.37 (s, 3H), 2.99 (s, 3H), 3.09 (s, 3H), 7.20 (d, 2H), 7.33 (d, 2H). 13C NMR (100 MHz, CDCl$_3$): 26.65, 35.17, 39.27, 125.39, 125.42, 127.34, 139.89, 170.07.

$N,N,2$-trimethylbenzamide (3c)1

$\text{\includegraphics{characterization_data}}$

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a colorless oil (68% yield). 1H NMR (400 MHz, CDCl$_3$): 2.28 (s, 3H), 2.81 (s, 3H), 3.12 (s, 3H), 7.14-7.28 (m, 4H). 13C NMR (100...
MHz, CDCl3): 18.55, 34.14, 38.00, 125.41, 125.57, 128.39, 129.98, 133.56, 136.41, 171.11.

\[N,N\text{-Dimethyl-4-methoxybenzamide (3d)} \]

\[
\begin{array}{c}
\text{MeO} \\
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{MeO}
\end{array}
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a colorless oil (77% yield). \(^1\)H NMR (400 MHz, CDCl₃): 2.93 (s, 6H), 3.71 (s, 3H), 6.79 (d, 2H), 7.29 (d, 2H). \(^1\)C NMR (100 MHz, CDCl₃): 35.22, 39.51, 55.02, 113.25, 128.08, 128.84, 160.31, 171.18.

\[N,N\text{-dimethyl-4-(trifluoromethyl)benzamide (3e)} \]

\[
\begin{array}{c}
\text{F₃C} \\
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{F₃C}
\end{array}
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a pale yellow oil (78% yield). \(^1\)H NMR (400 MHz, CDCl₃): 2.86 (s, 3H), 3.02 (s, 3H), 7.42 (d, 2H), 7.56 (d, 2H). \(^1\)C NMR (100 MHz, CDCl₃): 35.17, 39.27, 125.08, 127.34, 139.89, 170.07.

\[N,N\text{-dimethyl-3-(trifluoromethyl)benzamide (3f)} \]

\[
\begin{array}{c}
\text{CF₃} \\
\begin{array}{c}
\text{N} \\
\text{O} \\
\text{CF₃}
\end{array}
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate=5:6) to give a colorless oil (77% yield). \(^1\)H NMR (400 MHz, CDCl₃): 2.93 (s, 6H), 3.71 (s, 3H), 6.79 (d, 2H), 7.29 (d, 2H). \(^1\)C NMR (100 MHz, CDCl₃): 35.22, 39.51, 55.02, 113.25, 128.08, 128.84, 160.31, 171.18.
5:6) to give a colorless oil (84% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)): 2.99 (s, 3H), 3.14 (s, 3H), 7.55 (t, 1H), 7.61 (d, 1H), 7.67 (d, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): 35.52, 39.60, 124.15, 126.37, 129.11, 129.24, 137.17, 170.14.

4-bromo-\(N,N\)-dimethylbenzamide (3g)

\[
\text{Br} \quad \text{N} \quad \text{O} \\
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate = 5:6) to give a colorless oil (74% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)): 2.97 (s, 3H), 3.10 (s, 3H), 7.30 (d, 2H), 7.55 (t, 2H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): 35.40, 39.54, 123.80, 128.80, 131.55, 135.05, 170.55.

2-Chloro-\(N,N\)-dimethylbenzamide (3h)

\[
\text{Cl} \quad \text{N} \quad \text{O} \\
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate = 5:6) to give a colorless oil (64% yield). \(^1\)H NMR (400 MHz, CDCl\(_3\)): 2.86 (s, 3H), 3.13 (s, 3H), 7.27-7.40 (m, 4H). \(^13\)C NMR (100 MHz, CDCl\(_3\)): 34.64, 38.08, 127.20, 127.73, 129.54, 130.09, 136.29, 168.44.
2-Iodo-N,N-dimethylbenzamide (3i)

Purified by column chromatography (Petroleum Ether : Ethyl Acetate= 5:6) to give a colorless oil (53% yield). 1H NMR (400 MHz, CDCl$_3$): 2.85 (s, 3H), 3.14 (s, 3H), 7.07 (t, 1H), 7.21 (d, 1H), 7.39 (t, 1H), 7.82 (d, 1H). 13C NMR (100 MHz, CDCl$_3$): 34.75, 38.45, 127.06, 128.44, 130.10, 139.10, 170.80.

N,N-dimethyl 4-nitrobenzamide (3j)

Purified by column chromatography (Petroleum Ether : Ethyl Acetate= 5:6) to give a yellow oil (74% yield). 1H NMR (400 MHz, CDCl$_3$): 2.86 (s, 3H), 3.02 (s, 3H), 7.44 (t, 2H), 7.57 (d, 2H). 13C NMR (100 MHz, CDCl$_3$): 35.23, 39.23, 123.86, 128.00, 142.46, 148.11, 169.17.

N,N-dimethylthiophene-2-carboxamide (3k)

Purified by column chromatography (Petroleum Ether : Ethyl Acetate= 5:6) to give a pale yellow oil (73% yield). 1H NMR (400 MHz, CDCl$_3$): 3.19 (s, 6H), 7.04-7.06 (m, 1H), 7.35-7.36 (m, 1H), 7.44-7.51 (m, 1H).
13C NMR (100 MHz, CDCl$_3$): 29.81, 31.07, 126.80, 128.93, 129.30, 138.04, 164.57.

N,N-diethylbenzamide (5a)5

\[
\begin{array}{c}
\text{N} \\
\text{O} \\
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate= 5:6) to give a colorless oil (60% yield). 1H NMR (400 MHz, CDCl$_3$): 1.09 (s, 3H), 1.24 (s, 3H), 3.24 (d, 2H), 3.54 (d, 2H), 7.35-7.46 (m, 4H), 8.05 (t, 1H). 13C NMR (100 MHz, CDCl$_3$): 11.83, 13.14, 38.36, 42.36, 125.20, 127.38, 128.18, 135.88, 170.54.

4-bromo-N,N-diethylbenzamide (5g)6

\[
\begin{array}{c}
\text{Br} \\
\text{N} \\
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate= 5:6) to give a colorless oil (20% yield). 1H NMR (400 MHz, CDCl$_3$): 1.09-1.26 (m, 6H), 3.25 (d, 2H), 3.45-3.55 (m,2H), 7.24-7.43 (m, 4H). 13C NMR (100 MHz, CDCl$_3$): 13.02, 14.31, 39.36, 43.41, 126.36, 128.51, 131.74, 137.32, 171.46.
N,N-diethyl-4-nitrobenzamide (5j)7

\[
\begin{array}{c}
\text{O} \\
\text{N} \\
\text{O}_2\text{N}
\end{array}
\]

Purified by column chromatography (Petroleum Ether : Ethyl Acetate = 5:6) to give a colorless oil (40% yield). 1H NMR (400 MHz, CDCl\textsubscript{3}): 1.04 (d, 3H), 1.18 (d, 3H), 3.14 (d, 2H), 3.49 (d, 2H), 7.45-7.48 (m, 2H), 8.17-8.20 (m, 2H). 13C NMR (100 MHz, CDCl\textsubscript{3}): 11.83, 13.19, 38.50, 42.28, 122.58, 126.33, 142.34, 147.01, 167.95.
NMR spectra of compounds

1H NMR of 3a:

13C NMR of 3a:
1H NMR of 3b:

13C NMR of 3b:
1H NMR of 3c:

13C NMR of 3c:
1H NMR of 3d:

\[
\begin{align*}
&\text{MeC} \\
\end{align*}
\]

13C NMR of 3d:

\[
\begin{align*}
&\text{MeO} \\
\end{align*}
\]
1H NMR of 3e:

13C NMR of 3e:
1H NMR of 3f:

13C NMR of 3f:
1H NMR of 3g:

13C NMR of 3g:
^{1}H NMR of 3h:

^{13}C NMR of 3h:
1H NMR of 3i:

13C NMR of 3i:
1H NMR of 3j:

13C NMR of 3j:
1H NMR of 3k:

![H NMR spectrum of 3k](image)

13C NMR of 3k:

![C NMR spectrum of 3k](image)
1H NMR of 5a:

\[\text{Diagram of H NMR spectrum} \]

13C NMR of 5a:

\[\text{Diagram of C NMR spectrum} \]
1H NMR of 5g:

13C NMR of 5g:
1H NMR of 5j:

13C NMR of 5j:
Reference: