Electronic Supplementary Information (ESI)

Facile synthesis of 2-arylmethylindoles and 2-vinyllic indoles through palladium-catalyzed heteroannulations of 2-(2-propynyl)aniline and 2-(2-propynyl)tosylanilide

Bimolendu Das, Priyanka Kundu, and Chinmay Chowdhury*

Chemistry Division, Indian Institute of Chemical Biology (CSIR), 4, Raja S. C. Mullick Road, Kolkata-700032, India
E-mail: chinmay@iicb.res.in

Contents
1. General .. S3
2. X-Ray crystallographic informations of product 9c .. S4
3. Synthesis of starting substrates 7 .. S6
 Procedure for the synthesis of starting substrate 7a-b S6
4. Spectral data of starting substrates 7a-b .. S8
5. References ... S8
6. NMR Spectra of compounds 7, 9 and 12 .. S9
 1H & 13C NMR Spectrum of 7a ... S9
 1H & 13C NMR Spectrum of 7b ... S10
 1H & 13C NMR Spectrum of 9a ... S11
 1H & 13C NMR Spectrum of 9b ... S12
 1H & 13C NMR Spectrum of 9c ... S13
 1H & 13C NMR Spectrum of 9e ... S15
 1H & 13C NMR Spectrum of 9g ... S16
 1H & 13C NMR Spectrum of 9h ... S17
 1H & 13C NMR Spectrum of 9i ... S18
 1H & 13C NMR Spectrum of 9j ... S19
 1H & 13C NMR Spectrum of 12a ... S20
 1H & 13C NMR Spectrum of 12b ... S21

S1
1H & 13C NMR Spectrum of 12c ...S22
1H & 13C NMR Spectrum of 12d ...S23
1H & 13C NMR Spectrum of 12e ...S24
1H & 13C NMR Spectrum of 12f ...S25
1H & 13C NMR Spectrum of 12g ...S26
1H & 13C NMR Spectrum of 12h ...S27
1H & 13C NMR Spectrum of 12i ...S28
ESI mass Spectrum of 12i ...S29
1. General:

All solvents were distilled prior to use. Petroleum ether refers to fraction boiling in the range 60-80 °C. DMF and DCM were dried over CaH₂, distilled, and stored over 3Å molecular sieves in sealed container. THF was distilled over sodium and benzophenone. All the reactions were carried out under argon atmosphere and anhydrous conditions unless otherwise noted. Analytical thin-layer chromatography (TLC) was performed on Silica gel 60 F₂₅₄ aluminium TLC sheets. Visualization of the developed chromatogram was performed by UV absorbance or iodine exposure. For purification, column chromatography was performed using 60-120 or 100-200 mesh silica gel.

¹H and ¹³C NMR spectra were recorded on a 300, 500 or 600 MHz spectrometer using tetramethylsilane (TMS) as internal standard. Chemical shifts (δ) are given from TMS (δ = 0.00) in parts per million (ppm) with reference to the residual nuclei of the deuterated solvent used [CDCl₃: ¹H NMR δ = 7.26 ppm (s), ¹³C NMR δ = 77.0 ppm]. Coupling constants (J) are expressed in hertz (Hz) and spin multiplicities are given as s (singlet), d (doublet), dd (double doublet), dt (double triplet), t (triplet), m (multiplet), and br (broad). All ¹³C NMR spectra were obtained with complete proton decoupling. Mass spectra were performed using ESI-TOF, EI or FAB ionization mode. Infrared spectra were obtained on FT/IR-4200 infrared spectrometer as neat sample or as KBr pellet.
2. X-Ray crystallographic informations of product 9c:

Single crystals of products 9c were obtained through slow evaporation (at room temperature) of a solution in dichloromethane-petroleum ether. A single crystal of 9c was attached to a glass fiber with epoxy glue and transferred to a Bruker SHELXL-97 X-ray diffractometer, equipped with a graphite-monochromator. Diffraction data of product 9c was measured with MoKα radiation (λ = 0.71073 Å) at 296(2)K. Computing cell refinement and data reduction was carried out at APEX 2 Bruker Kappa. The structure was solved by direct methods using the SHELXS-97 program.1 Refinements were carried out with a full matrix least squares method against \(F^2 \) using SHELXL-97.2 The non-hydrogen atoms were refined with anisotropic thermal parameters. The hydrogen atoms were included in geometric positions and given thermal parameters equivalent to 1.2 times those of the atom to which they were attached. The ORTEP diagram (Figure S1) and some important crystallographic data (Table S1) of compound 9c are given below.

![Figure S1 ORTEP diagram of product 9c](image-url)
Table S1: Important crystal data of product 9c:

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{16}H_{12}F_{3}N</td>
</tr>
<tr>
<td>Formula weight</td>
<td>275.27</td>
</tr>
<tr>
<td>Temperature</td>
<td>296(2) K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.5871 (16) Å, (\alpha = 93.549^\circ) (9)</td>
</tr>
<tr>
<td></td>
<td>b = 10.4916 (18) Å, (\beta = 109.310^\circ) (9)</td>
</tr>
<tr>
<td></td>
<td>c = 14.112 (2) Å, (\gamma = 95.346^\circ) (10)</td>
</tr>
<tr>
<td>Volume</td>
<td>1327.3 (4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.378 g/m³</td>
</tr>
<tr>
<td>Absorption coefficient (Mu)</td>
<td>0.110 mm(^{-1})</td>
</tr>
<tr>
<td>F(000)</td>
<td>568.0</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.54 to 23.72°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10 ≤ h ≤ 10, -11 ≤ k ≤ 11, -15 ≤ l ≤ 15</td>
</tr>
<tr>
<td>Reflection collected</td>
<td>20553</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3977 [R(int) = 0.0451]</td>
</tr>
<tr>
<td>Completeness to theta = 25.44°</td>
<td>98.8%</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Multi-scan</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.991 and 0.977</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F(^2)</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3977/0/361</td>
</tr>
<tr>
<td>Goodness-of-fit on F(^2)</td>
<td>1.155</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0579, wR2 = 0.1732</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0735, wR2 = 0.1944</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.408 & -0.269 e.Å(^{-3})</td>
</tr>
</tbody>
</table>

The crystal data of product \textbf{9c} has already been deposited at Cambridge Crystallographic Data Centre. The CCDC reference number is 939088
3. Synthesis of starting substrates 7:

![Chemical structure of starting substrates 7a and 7b](image)

Scheme S1 Reagent and conditions: (i) ethynylmagnesium bromide, THF, 0 °C, 0.75 h, 62%; (ii) Et₃SiH, trifluoroacetic acid, DCM, 0 °C to rt, 2 h, 45%; (iii) LiAlH₄, THF, 0 °C, 2h, 75%; (iv) TsCl, pyridine, DCM, 0 °C to rt, 2h, 78%.

The starting substrates, i.e., 2-(prop-2-ynyl)aniline 7a and 2-(2-propynyl)tosylanilide 7b were prepared through a sequence of steps starting from *ortho*-azidobenzaldehyde (Scheme S1). The *ortho*-azidobenzaldehyde was first treated with ethynylmagnesium bromide, the resulting acetylenic carbinol was then undergone dehydroxylation followed by reduction to yield the product 7a. Finally, tosylation of amine 7a using tosyl chloride and pyridine in dry DCM led to the synthesis of compound 7b.

Procedure for the synthesis of starting substrate 7a-b:

To a solution of *ortho*-azido benzaldehyde (3.0 g, 20.39 mmol) in dry THF (30 mL) was added 0.5 M ethynylmagnesium bromide solution in dry THF (41 mL) dropwise at 0 °C under argon atmosphere and stirred for 45 minutes at the same temperature. After completion of reaction (TLC), the reaction mixture was quenched with saturated NH₄Cl solution at 0 °C. THF was evaporated under reduced pressure, and the resulting residue was extracted with ethyl acetate (3 × 50 mL). The combined organic extracts were washed with water (50 mL) and brine (50 mL), dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified through silica gel (100-200 mesh) column chromatography (ethyl acetate-petroleum ether) to afford the acetylenic carbinol (2.18 g, 62%).

To a solution of the acetylenic carbinol (3.0 g, 17.32 mmol) in dry DCM were added consecutively triethylsilane (5.53 mL, 34.64 mmol) and trifluoroacetic acid (5.3 mL, 69.28 mmol) at 0 °C under argon atmosphere and the reaction mixture was allowed to stir at room temperature. After completion of the reaction (TLC), the solvent was evaporated under reduced pressure; the resulting residue was dissolved in ethyl acetate (60 mL) and
the pH of the solution was adjusted to 7 by dropwise addition of aqueous NaHCO₃ solution. The mixture was then washed with water (30 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by silica gel (100–200 mesh) column chromatography (ethyl acetate-petroleum ether) to afford 2-(2-propynyl)azidobenzene (1.22 g, 45%).

To an ice cooled solution of 2-(2-propynyl)azidobenzene (2.0 g, 12.72 mmol) in dry THF (50 mL) was added slowly lithium aluminum hydride (0.96 g, 25.44 mmol) at 0 °C and the reaction mixture was allowed to stir at the same temperature until the completion of the reaction (TLC). It was then quenched with ethanol and water at 0 °C and the solvent was removed under reduced pressure. The residue was extracted with ethyl acetate (3 × 40 mL), and washed with water (30 mL) and brine (30 mL) successively. The organic layer was dried over anhydrous Na₂SO₄ and concentrated under reduced pressure. The resulting crude product was purified through silica gel (100-200 mesh) column chromatography (ethyl acetate-petroleum ether) to afford 2-(2-propynyl)aniline 7a (1.25 g, 75%).

To a solution of compound 7a (1.0 g, 7.62 mmol) in dry DCM (30 mL) were added successively pyridine (0.92 mL, 11.43 mmol) and p-toluenesulfonyl chloride (1.74 g, 9.14 mmol) at 0 °C and the reaction mixture was then allowed to stir at room temperature for 2 h. After completion of the reaction (tlc), it was extracted with DCM (2 × 30 mL), washed with water (20 mL) and brine (20 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The resulting residue was purified through silica gel (100-200 mes) column chromatography (ethyl acetate-petroleum ether) to afford the desired product 7b (1.69 g, 78%).
4. Spectral data of starting substrates 7a-b:

2-(Prop-2-ynyl)aniline (7a): Light yellow solid (1.25 g, 75% yield); mp 40-42 °C; \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta_H\) 7.18 (d, \(J = 7.5\) Hz, 1H), 7.10 (td, \(J = 7.6, 1.2\) Hz, 1H), 6.79-6.69 (m, 2H), 3.83 (brs, 2H), 3.44 (d, \(J = 2.7\) Hz, 2H), 2.18 (t, \(J = 2.7\) Hz, 1H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta_C\) 144.4, 129.3, 128.2, 120.8, 118.9, 116.0, 80.8, 70.7, 21.6; HRMS (EI+) calcd. for C\(_9\)H\(_9\)N [M]\(^+\) 131.07350, found 131.07352.

2-(2-Propynyl)tosylanilide (7b):\(^3\) Colorless solid (1.69 g, 78% yield); mp 118-120 °C; \(^1\)H NMR (CDCl\(_3\), 300 MHz) \(\delta_H\) 7.61 (d, \(J = 8.4\) Hz, 2H), 7.31-7.17 (m, 6H), 6.83 (brs, 1H), 3.19 (d, \(J = 2.4\) Hz, 2H), 2.39 (s, 3H), 2.24 (t, \(J = 2.7\) Hz, 1H); \(^{13}\)C NMR (CDCl\(_3\), 75 MHz) \(\delta_C\) 143.9, 136.6, 134.3, 130.6, 129.65, 129.62, 128.1, 127.1, 126.9, 125.9, 80.4, 71.9, 21.6, 21.5; HRMS (EI+) calcd. for C\(_{16}\)H\(_{15}\)NO\(_2\)S [M]\(^+\) 285.08235, found 285.08261.

5. References:

6. NMR Spectra of compounds 7, 9 and 12:

1H NMR (300 MHz) Spectrum of 7a:

13C NMR (75 MHz) Spectrum of 7a:
1H NMR (300 MHz) Spectrum of 7b:

13C NMR (75 MHz) Spectrum of 7b:
1H NMR (300 MHz) Spectrum of 9a:

13C NMR (75 MHz) Spectrum of 9a:
1H NMR (300 MHz) Spectrum of 9b:

13C NMR (75 MHz) Spectrum of 9b:
1H NMR (300 MHz) Spectrum of 9c:

PK-1-132 1H in CDCL3 13.09.12

13C NMR (75 MHz) Spectrum of 9c:

13C in CDCL3 24.09.12
13C NMR (75 MHz) Spectrum of 9c (Expansion):

![13C NMR Spectrum of 9c]
1H NMR (300 MHz) Spectrum of 9e:

13C NMR (75 MHz) Spectrum of 9e:

S15
1H NMR (300 MHz) Spectrum of 9g:

13C NMR (75 MHz) Spectrum of 9g:
\(^1\)H NMR (600 MHz) Spectrum of 9h:

\(^{13}\)C NMR (75 MHz) Spectrum of 9h:
1H NMR (300 MHz) Spectrum of 9i:

13C NMR (75 MHz) Spectrum of 9i:
1H NMR (300 MHz) Spectrum of 9j:

13C NMR (75 MHz) Spectrum of 9j:
1H NMR (300 MHz) Spectrum of 12a:

1H in CDCl$_3$
23.8.12

13C NMR (75 MHz) Spectrum of 12a:

13C in CDCl$_3$
31.8.12

S20
1H NMR (300 MHz) Spectrum of 12b:

13C NMR (75 MHz) Spectrum of 12b:
1H NMR (300 MHz) Spectrum of 12c:

BC-5-101 1H in CDCl$_3$ 08.11.12

13C NMR (75 MHz) Spectrum of 12c:

BC-5-101 13C in CDCl$_3$ 7.2.13
1H NMR (300 MHz) Spectrum of 12d:

13C NMR (75 MHz) Spectrum of 12d:
1H NMR (300 MHz) Spectrum of 12e:

13C NMR (75 MHz) Spectrum of 12e:
1H NMR (500 MHz) Spectrum of 12f:

13C NMR (125 MHz) Spectrum of 12f:
1H NMR (600 MHz) Spectrum of 12g:

13C NMR (150 MHz) Spectrum of 12g:

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2013
1H NMR (600 MHz) Spectrum of 12h:

13C NMR (75 MHz) Spectrum of 12h:
1H NMR (600 MHz) Spectrum of 12i:

13C NMR (150 MHz) Spectrum of 12i:
ESI mass Spectrum of 12i:

![ESI mass Spectrum of 12i](image)