Supporting information for

Synthesis, structural characterization and reactivity of heteroazuliporphyrins.

Timothy D. Lash,* Jessica A. El-Beck and Gregory M. Ferrence Department of Chemistry, Illinois State University, Normal, Illinois 61790-4160 E-mail: <u>tdlash@ilstu.edu</u>

Table of Contents

Page

2-5	X-ray crystal structures of 8b and 9b (Figures S1-S4)
6-18	Selected UV-vis spectra (Figures S5-S17)
19-108	Selected proton NMR, NOE difference proton NMR, ¹ H- ¹ H COSY, HMQC, DEPT- 135 and carbon-13 NMR spectra (Figures S18-S139)
109-119	Selected EI and ESI MS (Figures S140-S152)

Figure S1. ORTEP-III drawings (50% probability level, hydrogens drawn arbitrarily small) of thia-azuliporphyrin **8b** showing several different views.

Figure S2. ORTEP-III drawings (50% probability level, hydrogens drawn arbitrarily small) of selena-azuliporphyrin **9b** showing several different views.

Figure S3. Color ORTEP-III drawings rendered in POV-Ray (50% probability level, hydrogen atoms drawn arbitrarily small) for thia-azuliporphyrin 8b and selena-azuliporphyrin 9b.

Figure S4. Space filling representations of the X-ray crystal structures for thia-azuliporphyrin **8b** and selena-azuliporphyrin **9b** generated with POV-Ray.

Figure S5. UV-vis spectra of thia-azuliporphyrin **8b**. Upper spectrum: **8b** in 1% Et_3N -chloroform. Lower spectrum: **8b** H_2^{2+} in 1% TFA-chloroform.

Figure S6. UV-vis spectra of thia-azuliporphyrin **8c**. Upper spectrum: **8c** in 1% Et₃N-chloroform. Lower spectrum: **8c** H_2^{2+} in 1% TFA-chloroform.

Figure S7. UV-vis spectra of selena-azuliporphyrin **9b**. Upper spectrum: **9b** in 1% Et₃N-chloroform. Lower spectrum: **9b**H₂²⁺ in 1% TFA-chloroform.

Figure S8. UV-vis spectra of selena-azuliporphyrin 9c. Upper spectrum: 9c in 1% Et_3N -chloroform. Lower spectrum: 9c H_2^{2+} in 1% TFA-chloroform.

Figure S9. UV-vis spectra of thiacarbaporphyrin **15a**. Upper spectrum: **15a** in 1% Et₃N-chloroform. Lower spectrum: **15a**H⁺ in 1% TFA-chloroform.

Figure S10. UV-vis spectra of thiacarbaporphyrin **15b**. Upper spectrum: **15b** in 1% Et₃N-chloroform. Lower spectrum: **15b**H⁺ in 1% TFA-chloroform.

Figure S11. UV-vis spectra of thiacarbaporphyrin 16b. Upper spectrum: 16b in 1% Et_3N- chloroform. Lower spectrum: 16bH⁺ in 1% TFA-chloroform.

Figure S12. UV-vis spectra of selenacarbaporphyrin **15c**. Upper spectrum: **15c** in 1% Et₃N-chloroform. Lower spectrum: **15c**H⁺ in 1% TFA-chloroform.

Figure S13. UV-vis spectra of selenacarbaporphyrin **15d**. Upper spectrum: **15d** in 1% Et₃N-chloroform. Lower spectrum: **15d**H⁺ in 1% TFA-chloroform.

Figure S14. UV-vis spectra of selenacarbaporphyrin **16d**. Upper spectrum: **16d** in 1% Et₃N-chloroform. Lower spectrum: **16d**H⁺ in 1% TFA-chloroform.

Figure S15. UV-vis spectra of oxa-azuliporphyrin 12a.2HCl in chloroform (upper spectrum), 1% TFA-chloroform (middle spectrum) and 2% DBU-chloroform (free base 12a, lower spectrum).

Figure S16. UV-vis spectra of oxa-azuliporphyrin 12b.2HCl in chloroform (upper spectrum), 1% TFA-chloroform (middle spectrum) and 2% DBU-chloroform (free base 12b, lower spectrum).

Figure S17. UV-vis spectra of oxa-azuliporphyrin **12c**.2HCl in chloroform (upper spectrum), 1% TFA-chloroform (middle spectrum) and 2% DBU-chloroform (free base **12c**, lower spectrum).

Figure S18. 500 MHz proton NMR spectrum of thia-azuliporphyrin 8b in CDCl₃.

Figure S19. 400 MHz proton NMR spectrum of thia-azuliporphyrin **8b** in CDCl₃ showing the 21-H resonance near 2.3 ppm.

Figure S20. ¹H-¹H COSY NMR spectrum of thia-azuliporphyrin 8b in CDCl₃.

Figure S21. HSQC NMR spectrum of thia-azuliporphyrin 8b in CDCl₃.

Figure S22. Selected nOe difference proton NMR spectra of thia-azuliporphyrin 8b in CDCl₃.

Figure S23. DEPT-135 NMR spectrum of thia-azuliporphyrin 8b in CDCl₃.

Figure S24. 100 MHz carbon-13 NMR spectrum of thia-azuliporphyrin 8b in CDCl₃.

Figure S25. 500 MHz proton NMR spectrum of thia-azuliporphyrin $8bH_2^{2+}$ in TFA-CDCl₃.

Figure S26. ¹H-¹H COSY NMR spectrum of thia-azuliporphyrin $8bH_2^{2+}$ in TFA-CDCl₃.

Figure S27. HSQC NMR spectrum of thia-azuliporphyrin $8bH_2^{2+}$ in TFA-CDCl₃.

Figure S28. Selected nOe difference proton NMR spectra of thia-azuliporphyrin $\mathbf{8bH_2}^{2+}$ in CDCl₃.

Figure S29. DEPT-135 NMR spectrum of thia-azuliporphyrin $8bH_2^{2+}$ in TFA-CDCl₃.

Figure S30. 125 MHz carbon-13 NMR spectrum of thia-azuliporphyrin $8bH_2^{2+}$ in CDCl₃.

Figure S31. 400 MHz proton NMR spectrum of thia-azuliporphyrin 8b in DMSO-d₆.

Figure S32. 400 MHz proton NMR spectrum of thia-azuliporphyrin 8b in acetone- d_6 .

Figure S33. 400 MHz proton NMR spectrum of thia-azuliporphyrin 8b in pyridine- d_5 .

Figure S34. 500 MHz proton NMR spectrum of thia-azuliporphyrin 8c in CDCl₃.

Figure S35. 400 MHz proton NMR spectrum of thia-azuliporphyrin **8c** in CDCl₃ showing the 21-H resonance near 3.0 ppm.

Figure S36. ¹H-¹H COSY NMR spectrum of thia-azuliporphyrin 8c in CDCl₃.

Figure S37. Selected nOe difference proton NMR spectra of thia-azuliporphyrin 8c in CDCl₃.

Figure S38. HSQC NMR spectrum of thia-azuliporphyrin 8c in CDCl₃.

Figure S39. DEPT-135 NMR spectrum of thia-azuliporphyrin 8c in CDCl₃.

Figure S40. 125 MHz carbon-13 NMR spectrum of thia-azuliporphyrin 8c in CDCl₃.

Figure S41. 500 MHz proton NMR spectrum of thia-azuliporphyrin $8cH_2^{2+}$ in TFA-CDCl₃.

Figure S42. Upfield region for the 500 MHz ¹H NMR spectrum of 8cH₂²⁺ in CDCl₃ with a higher concentration of TFA showing the NH resonance.

Figure S43. 1 H- 1 H COSY NMR spectrum of thia-azuliporphyrin 8cH₂²⁺ in TFA-CDCl₃.

Figure S44. HSQC NMR spectrum of thia-azuliporphyrin $8cH_2^{2+}$ in TFA-CDCl₃.