Supporting Information

Fluorometric Sensing of Hg$^{2+}$ ions in aqueous medium by nano-aggregates of a tripodal receptor

Ajnesh Singha,†, Simanpreet Kaurb,†, Narinder Singha*, Navneet Kaurb,*

a Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Panjab 140001, India.
b Centre for Nanoscience & Nanotechnology, Panjab University, Chandigarh, 160014, India.

† both authors have equal contributed

* Corresponding author: E-mail address; nsingh@iitrpr.ac.in (N. Singh), navneetkaur@pu.ac.in (N. Kaur), Tel.: +91 1881242176/+91-1722534464.

Table of contents

Figure S1. FT IR spectrum of compound 1.

Figure S2. 1H NMR spectrum of compound 1.

Figure S3. 13C NMR spectrum of compound 1.

Figure S4. ESI Mass spectrum of compound 1.

Figure S5. FT IR spectrum of compound 2.

Figure S6. 1H NMR spectrum of compound 2.

Figure S7. 13C NMR spectrum of compound 2.

Figure S8. ESI Mass spectrum of compound 1.

Figure S9: Effect of water content (0-100%) on the formation of nanoparticles.

Figure S10. Determination of LOD

Figure S11. Fluorescence spectra of nano-aggregates N1 on addition on various tetrabutylammonium anions (F$, Cl^-$, Br$, I$, PO$_4^{3-}$, ClO$_4^-$, HSO$_4^-$, CN$^-$ and CH$_3$COO$^-$).

Figure S12. Fluorescence spectra of nano-aggregates N2 on addition on various tetrabutylammonium anions (F$, Cl^-$, Br$, I$, PO$_4^{3-}$, ClO$_4^-$, HSO$_4^-$, CN$^-$ and CH$_3$COO$^-$).

Figure S13. Fluorescence spectra of nano-aggregates N1 at different pH values.

Figure S14. Fluorescence spectra of nano-aggregates N1 at different concentrations of TBA nitrate to evaluate the salt effect.

Figure S15. ESI Mass spectrum of complex [1.Hg$^{2+}$.NO$_3^-$]$_2$.H$_2$O.
Figure S1. FT IR spectrum of compound 1.

Figure S2. 1H NMR spectrum of compound 1.
Figure S3. 13C NMR spectrum of compound 1.

Figure S4. ESI Mass spectrum of compound 1.
Figure S5. FT IR spectrum of compound 2.

Figure S6. 1H NMR spectrum of compound 2.
Figure S7. 13C NMR spectrum of compound 2.

Figure S8. ESI Mass spectrum of compound 2.
Figure S9: Effect of water content (0-100%) on the formation of nanoparticles.

\[y = 0.8992x + 184.01 \]
\[R^2 = 0.9417 \]

Figure S10. Fluorescence Intensity (380 nm, excited at 285nm) of nano-aggregates N1(25µM) as a function of Hg^{2+} concentration. The calibration curve in this concentration range is linear. The standard deviation (σ) of the emission intensity without any Hg^{2+} was determined to be 0.7237. Therefore, the detection limit was determined to be \(2.41 \times 10^{-9}\) M according to the 3σ method.
Determination of the detection limit.

The detection limit (DL) of nano-aggregates of 1 for Hg\(^{2+}\) was determined from the following equation:

\[
DL = \frac{KS_{b1}}{S}
\]

Where \(K = 3\); \(S_{b1}\) is the standard deviation of the blank solution; \(S\) is the slope of the calibration curve.

Figure S11. Fluorescence spectra of nano-aggregates N1 on addition on various tetrabutylammonium anions (F\(^-\), Cl\(^-\), Br\(^-\), I\(^-\), PO\(_4^{3-}\), ClO\(_4^{-}\), HSO\(_4^{-}\), CN\(^-\) and CH\(_3\)COO\(^-\)).
Figure S12. Fluorescence spectra of nano-aggregates N2 on addition on various tetrabutylammonium anions (F⁻, Cl⁻, Br⁻, I⁻, PO₄³⁻, ClO₄⁻, HSO₄⁻, CN⁻ and CH₃COO⁻).

Figure S13. Fluorescence spectra of nano-aggregates N1 at different pH values.
Figure S14. Fluorescence spectra of nano-aggregates N1 at different concentrations of TBA nitrate to evaluate the salt effect.

Figure S15. ESI Mass spectrum of complex [1.Hg\(^{2+}\).(NO\(_3\))\(_2\)].H\(_2\)O.
<table>
<thead>
<tr>
<th>Solvent System</th>
<th>Linear range (µM)</th>
<th>LOD</th>
<th>Working mechanism</th>
<th>Ref. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH$_3$CN–HEPES buffer</td>
<td>0.001-1</td>
<td>7.4 nm</td>
<td>Fluorescence on</td>
<td>14</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>0-2.0</td>
<td>50 nm</td>
<td>Fluorescence on</td>
<td>15</td>
</tr>
<tr>
<td>Water:MeOH (1:2)</td>
<td>0.3-1.0</td>
<td>30 nm</td>
<td>FRET</td>
<td>16</td>
</tr>
<tr>
<td>THF-Water (95:5)</td>
<td>NA</td>
<td>NA</td>
<td>Bond energy Transfer</td>
<td>17</td>
</tr>
<tr>
<td>H$_2$O–MeCN(99:1)</td>
<td>0.01-4.5</td>
<td>2.1 nm</td>
<td>Fluorescence on</td>
<td>18</td>
</tr>
<tr>
<td>Tris-HCl buffer</td>
<td>0.1-20</td>
<td>0.5 ppb</td>
<td>Fluorescence off</td>
<td>19</td>
</tr>
<tr>
<td>HEPES buffer</td>
<td>NA</td>
<td>200 nm</td>
<td>Fluorescence on</td>
<td>20</td>
</tr>
<tr>
<td>THF/H$_2$O (9:1)</td>
<td>NA</td>
<td>4.5 nm</td>
<td>Fluorescence off</td>
<td>21</td>
</tr>
<tr>
<td>Phosphate buffer</td>
<td>0-30</td>
<td>0.2 µM</td>
<td>Fluorescence off</td>
<td>22</td>
</tr>
<tr>
<td>Acetonitrile :water (4:1)</td>
<td>NA</td>
<td>1.74 µM</td>
<td>Fluorescence off</td>
<td>23</td>
</tr>
<tr>
<td>Methanol</td>
<td>NA</td>
<td>15 µM</td>
<td>Fluorescence off</td>
<td>24</td>
</tr>
<tr>
<td>Water</td>
<td>1-10</td>
<td>2.4 nM</td>
<td>Fluorescence on</td>
<td>Present work</td>
</tr>
</tbody>
</table>