Synthesis of Thioamides via One-Pot A^3-Coupling of Alkynyl Bromides, Amines, and Sodium Sulfide

Yadong Sun,*b Huanfeng Jiang,*a Wanqing Wu,a Wei Zeng,a Jianxiao Li,a

a School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

b College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China

E-mail: jianghf@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

Supporting Information

List of Contents

A. General method..S2

B. General procedure for the synthesis of products..S2

C. NMR Spectra..S3
A. General method

Melting points were measured with a melting point instrument and were uncorrected. 1H NMR and 13C NMR spectra were recorded on Bruker Avance (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker Vector 22 spectrometer. GC-MS was obtained using electron ionization (EI). High-resolution mass spectra were obtained with a LCMS-IT-TOF mass spectrometer. TLC was performed by using commercially prepared 100–400 mesh silica gel plates (GF$_{254}$) and visualization was effected at 254 nm. All reagents were obtained from commercial suppliers and used without further purification.

B. General procedure for the synthesis of products

\[
\begin{align*}
R^1\text{=C\text{-}}X + HN^R_2 + Na_2S\cdot9H_2O \xrightarrow{80-110^\circ C, 8h, DMF} R^1S-N^R_2
\end{align*}
\]

A mixture of alkynyl halide (1.0 mmol), amine (1.5 mmol), and Na$_2$S·9H$_2$O (1.5 mmol) in DMF (2.5 mL) was placed in a sealed tube (25 mL) equipped with a magnetic stirring bar. The mixture was stirred at 80 °C (or 110 °C) for 8h. After the reaction was completed, the mixture was washed with brine and extracted with ethyl acetate. The organic layer was dried with anhydrous MgSO$_4$, concentrated in vacuo and purified by flash silica gel chromatography using petroleum ether/ethyl acetate 15:1 to give the desired products.
C. NMR Spectra

1H-NMR and 13C-NMR of 3a
1H-NMR and 13C-NMR of 3b
1H-NMR and 13C-NMR of 3c
1H-NMR and 13C-NMR of 3d
1H-NMR and 13C-NMR of 3e
1H-NMR and 13C-NMR of 3f
1H-NMR and 13C-NMR of 3g
1H-NMR and 13C-NMR of 3h
1H-NMR and 13C-NMR of 3i
1H-NMR and 13C-NMR of 3j
1H-NMR and 13C-NMR of 3k
1H-NMR and 13C-NMR of 3l
1H-NMR and 13C-NMR of 3m
1H-NMR and 13C-NMR of 4b
1H-NMR and 13C-NMR of 4c
1H-NMR and 13C-NMR of 4d
1H-NMR and 13C-NMR of 4e
1H-NMR and 13C-NMR of 4f
1H-NMR and 13C-NMR of 4g
1H-NMR and 13C-NMR of 4h
1H-NMR and 13C-NMR of 4i

![NMR Spectra](image)

S23
1H-NMR and 13C-NMR of 4j
1H-NMR and 13C-NMR of 4k
^{1}H-NMR and ^{13}C-NMR of 4l
1H-NMR and 13C-NMR of 4m
1H-NMR and 13C-NMR of 4n
1H-NMR and 13C-NMR of 4o
1H-NMR and 13C-NMR of 4p
1H-NMR and 13C-NMR of 5a
1H-NMR and 13C-NMR of 5b
1H-NMR and 13C-NMR of 5c
1H-NMR and 13C-NMR of 5d
1H-NMR and 13C-NMR of 5e
1H-NMR and 13C-NMR of 5f
1H-NMR and 13C-NMR of 5g
1H-NMR and 13C-NMR of 5h
1H-NMR and 13C-NMR of 5i
1H-NMR and 13C-NMR of 6

Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry
This journal is © The Royal Society of Chemistry 2014
1H-NMR and 13C-NMR of 7

![NMR Spectra](image-url)
1H-NMR and 13C-NMR of [D]$_n$-3a