Supporting information

The Synthesis and Biological Evaluation of Mycobacterial
\(p \)-Hydroxybenzoic Acid Derivatives (\(p \)-HBADs)

Jean Bourke[a], Corinna F. Brereton[b], Stephen V. Gordon[c], Ed C. Lavelle*[b] and
aEoin M. Scanlan*[a]

e-mail: eoin.scanlan@tcd.ie

Contents:

Figure 3..S3
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 2...S4
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 3...S5
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 4...S6
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 5...S7
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 6...S8
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 7...S9
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 8...S10
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 9...S11
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 10...S12
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 11...S13
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 12...S14
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 13...S15
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 14...S16
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 15...S17
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 16...S18
\(^1\)H and \(^{13}\)C NMR Spectra of Compound 17.................................S19

\(^1\)H and \(^{13}\)C NMR Spectra of Compound 18.................................S20

\(^1\)H and \(^{13}\)C NMR Spectra of Compound 20.................................S21

\(^1\)H and \(^{13}\)C NMR Spectra of Compound 21.................................S22

\(^1\)H and \(^{13}\)C NMR Spectra of Compound 22.................................S23

\(^1\)H and \(^{13}\)C NMR Spectra of Compound 23.................................S24
Cells were incubated for 72 h and T cell proliferation and production was assessed. Splenocytes were incubated with medium, p-HBADs alone or in the presence of anti-CD3e. Cells were incubated for 72 h and T cell proliferation and IFN-γ production was assessed.

Figure 3. Flow cytometry data. p-HBADs suppress IFN-γ production by CD4+ T cells. Splenocytes were incubated with medium, p-HBADs alone or in the presence of anti-CD3e. Cells were incubated for 72 h and T cell proliferation and IFN-γ production was assessed.
\(^1\)H of compound 2

\(^{13}\)C of compound 2
1H of compound 3

13C of compound 3
1H of compound 4

13C of compound 4
1H of compound 5

13C of compound 5
^{1}H of compound 6

^{13}C of compound 6
1H of compound 7

13C of compound 7
1H of compound 8

13C of compound 8
1H of compound 9

13C of compound 9
1H of compound 10

13C of compound 10
1H of compound 11

1C of compound 11
^{1}H of compound 12

^{13}C of compound 12
1H of compound 13

13C of compound 13
1H of compound 14

13C of compound 14
1H of compound 15

13C of compound 15
1H of compound 16

13C of compound 16
1H of compound 17

13C of compound 17
1H of compound 18

13C of compound 18
1H of compound 19

13C of compound 19
1H of compound 20

13C of compound 20
1H of compound 21

13C of compound 21