Supporting Information

Targeted Delivery of Pharmacological Chaperones for Gaucher Disease to Macrophages by a Mannosylated Cyclodextrin Carrier†

Julio Rodríguez-Lavado,a Mario de la Mata Fernández,b José L. Jiménez Blanco,a M. Isabel García-Moreno,a Juan M. Benito,c Antonio Díaz-Quintana,d José A. Sánchez Alcázar,b Katsumi Higaki,e Eiji Nanba,e Kousaku Ohno,f Yoshiyuki Suzuki,g Carmen Ortiz Mellet*a and José M. García Fernández*ce

List of Contents:

S2 General methods.

S3 to S6 Synthesis of dansylated derivatives 7 and 8.

S7 to S13 1H and 13C NMR spectra of the trimannosylated βCD derivatives 6 and (ManS)3-βCD, and fluorescent probes 7 and 8.

S14 ESI-MS spectra of trimannosylated βCD derivatives 6 and (ManS)3-βCD, and fluorescent probes 7 and 8.

S15 to S16 Plot of the variation of (ManS)3-βCD 1H resonances vs. chaperone concentration in NMR titration experiments.

S17 to S18 Lineweaver-Burk plots of the inhibition of commercial glycosidases with βCD:PC complexes.

S19 Inhibition of the adhesion of rhMMR to yeast mannan in the presence of increasing concentration of (ManS)3-βCD and representative high mannose oligosaccharides.
General methods

NMR titration experiments. Association constants (K_a) were determined in D$_2$O at 313 K by measuring the proton chemical shift variations in the 1H NMR spectra of a solution of the βCD derivative in the presence of increasing amounts of the corresponding chaperone. In a typical titration experiment, a solution of the host (ManS)$_3$-βCD (1.63 mM) in D$_2$O was prepared, a 500 μL aliquot was transferred to a 5-mm NMR tube, and the initial NMR spectrum was recorded. A concentrated solution (ca. 25 mM) of the chaperone 6S-NOI-NJ and 6S-NAdB-NJ in the previous solution was prepared in order to maintain the host concentration constant all throughout the titration experiment. 10 μL aliquots of this solution were sequentially added to the βCD solution and the corresponding NMR spectra recorded until 90-100% complexation of the guest had been achieved. The chemical shifts of the diagnostic signals obtained at 10-15 different host-guest concentration ratios were used in an iterative least-squares fitting procedure (Figures S4-S5).

Isothermal titration calorimetry (ITC). In addition to information in the Experimental Section of the manuscript, the lectin solns to be used for ITC were prepared in 0.1 M sodium phosphate buffer (pH 7.4) containing 0.1 mM Ca$^{2+}$ and 0.1 mM Mn$^{2+}$, dialysed against a large volume of the same buffer and centrifuged to remove any insoluble material. The protein concentrations were determined colorimetrically following the Bradford method, measuring the absorbance at 595 nm of a solution (1 mL) containing 200 μL of the commercial reagent (BIO-RAD protein assay), distilled water (780 μL) and 20 μL of protein solution containing 2-10 μg of protein. Calibration of the commercial reagent was carried out using a 10% (w/v) solution of BSA. The extinction coefficient determined for the colorimetric complex was $\varepsilon_{595} = 45$ mL·mg$^{-1}$·cm$^{-1}$.
Preparation of \(N \)-dansyl-2,2,2-tris\[5-(\alpha-D\)-mannopyranosylthio]-2-oxapentyl]ethyl amine (8). A solution of 2,2,2-tris\[5-(2,3,4,6-tetra-\(O\)-acetyl-\(\alpha\)-D-mannopyranosylthio)-2-oxapentyl]ethyl azide 9 (106 mg, 77 \(\mu\)mol) in MeOH (5 mL) was treated with a NaOMe (10% eq, 1 M methanolic solution, 92 \(\mu\)L) for 3 h. The solution was stirred at room temperature for 30 min, and then neutralised using Amberlite IR-120 (\(H^+\)) ion exchange resin, filtered and concentrated to dryness. The resulting deacetylated azide was then hydrogenated by treatment with 10% Pd/C (20 mg) under a \(H_2\) atmosphere (1 atm) for 16 h. The reaction mixture was filtered and the solvents evaporated. The crude amine 10 thus obtained was dissolved in anhydrous DMF (2.3 mL) and the solution was cooled to 0 °C. Triethylamine (17 \(\mu\)L, 0.12 mmol) and 5-dimethylaminonaphtalene-1-sulfonyl chloride (32 mg, 0.12 mmol) were added and the reaction mixture was stirred for 24 hours at room temperature. The solvent was subsequently removed under reduce pressure and the residue was purified by column chromatography using 50:10:1 \(\rightarrow\) 50:10:1 DCM-MeOH-H\(2\)O as eluent. Yield: 66 mg (80% over three steps). \([\alpha]_D\) +97.4 (c 0.7, MeOH); \(R_f\) 0.33 (30:10:1 DCM-MeOH-H\(2\)O); IR (ATR) \(\nu_{\text{max}}\) 3351, 1648, 1456, 1067 cm\(^{-1}\);
1H NMR (500 MHz, CD$_3$OD) δ 8.61 (bd, $J_{3,4} = 8.5$ Hz, 1 H, H-4Naph), 8.34 (d, $J_{8,9} = 8.7$ Hz, 1 H, H-9Naph), 8.22 (dd, $J_{2,3} = 7.3$ Hz, $J_{2,4} = 2.0$ Hz, 1 H, H-2Naph), 7.65 (m, 2 H, H-3Naph, H-8Naph), 7.32 (d, $J_{7,8} = 7.6$ Hz, 1 H, H-7Naph), 5.24 (bs, 3 H, H-1Man), 3.95 (bd, 3 H, $J_{1,2} = 0.9$ Hz, H-2Man), 3.91 (m, 3 H, H-5Man), 3.84 (dd, 3 H, $J_{5a,5b} = 11.9$ Hz, $J_{5a,5b} = 2.2$ Hz, H-6aMan), 3.78 (dd, 3 H, $J_{5,6b} = 5.5$ Hz, H-6bMan), 3.70 (m, 6 H, H-3Man, H-4Man), 3.30 (t, 6 H, $J_{H,H} = 5.9$ Hz, H-3Pent), 3.15 (bs, 6 H, H-1Pent), 2.94 (m, 2 H, CH$_2$NH), 2.92 (s, 6 H, CH$_3$), 2.65 (m, 6 H, H-1Pent), 1.78 (t, 6 H, H-4Pent); 13C NMR (125.7 MHz, CD$_3$OD) δ 153.3 (C-6Naph), 136.1 (C-1Naph), 131.4-130.7 (C-2Naph, C-4Naph, C-5Naph, C-10Naph), 129.4 (C-8Naph), 124.4 (C-3Naph), 120.2 (C-9Naph), 116.5 (C-7Naph), 86.5 (C-1Man), 74.9 (C-5Man), 73.7 (C-2Man), 73.1 (C-3Man), 71.2 (C-3Pent), 70.6 (C-1Pent), 68.7 (C-4Man), 62.7 (C-6Man), 47.8 (CH$_3$), 45.9 (CH$_2$NH), 44.9 (C$_q$) 30.6 (C-4Pent), 28.8 (C-5Pent); ESIMS: m/z 1099 [M + Na]$^+$; Anal. Caled for C$_{44}$H$_{72}$N$_2$O$_{20}$S$_4$: C, 49.05; H, 6.74; N, 2.60; S, 11.91. Found: C, 48.67; H, 6.83; N, 2.34; S, 11.56.

N-(13-$ tert $-butoxycarbonylamino$-$4,7,10-trioxa$-$tridecanyl$-1-$adamantanecarboxamide (13). To a stirred solution of adamantane-1-carbonyl chloride 11 (0.47 g, 2.38 mmol) in DCM (27 mL), a solution of N-$ tert $-butoxycarbonyl$-4,7,10$-$trioxa$-$1,13$-$tridecanediamine4 12 (0.71 g, 2.23 mmol) and Et$_3$N (1.02 mL, 5.50 mmol) in DCM (27 mL) was added. The reaction mixture was stirred for 3 h at room temperature,
and then diluted with DCM (30 mL), washed with water (30 mL), an aqueous solution of 1 N HCl (30 mL) and saturated aqueous NaHCO₃ (35 mL), dried (MgSO₄), and concentrated. The resulting residue was purified by column chromatography using 1:2 acetone-cyclohexane as eluent. Yield: 1.043 g (97%); Rᵥ 0.24 (1:2 acetone-cyclohexane); IR (ATR) νₘₐₓ 3344, 2904, 1697, 1638, 1521, 1105 cm⁻¹; H NMR (300 MHz, CDCl₃) δ 6.28 (bs, 1 H, NHCO), 4.96 (bs, 1 H, NHBoc), 3.66-3.49 (m, 12 H, OCH₂), 3.33 (q, 2 H, J_H,H = 6.1 Hz, CH₂NHCO), 3.20 (q, 2 H, J_H,H = 6.1 Hz, CH₂NHBoc), 2.00 (bs, 3 H, CH), 1.81 (m, 6 H, CCH₂), 1.75 (m, 4 H, CH₂CH₂NH), 1.69 (m, 6 H, CH₂), 1.41 (s, 9 H, CMe₃); C NMR (75.5 MHz, CDCl₃) δ 177.8 (CO amide), 155.9 (CO carbamate), 78.8 (CMe₃), 70.6, 70.5, 70.4, 70.3, 70.1, 69.5 (OCH₂), 40.4 (CH₂NHBoc), 39.2 (CH), 38.5 (CCO), 37.9 (CH₂NHBoc), 36.5 (CCH₂), 29.6 (CH₂CH₂NHBoc), 28.9 (CH₂CH₂NHCOC), 28.4 (CMe₃), 28.1 (CH₂); ESIMS: m/z 505.3 [M + Na]⁺; Anal. Calcd for C₂₆H₄₆N₂O₆: C, 64.70; H, 9.61; N, 5.80. C, 60.84; H, 9.70; N, 5.72.

N-(13-amino-4,7,10-trioxa)tridecanyl-1-adamantanecarboxamide (14). To a stirred solution of 13 (130 mg, 0.27 mmol) in DCM (5 mL), TFA (1 mL) was dropwise added. The reaction mixture was stirred at room temperature for 1 h, concentrated under reduced pressure, coevaporated several times with DCM and toluene, suspended in 10:1 water-HCl 0.1 N, freeze-dried, and neutralized with basic resin IRA67. Yield: 103 mg (quantitative); Rᵥ 0.40 (30:1:1 CH₃CN-H₂O-NH₄OH); IR (ATR) νₘₐₓ 3350, 2902, 1634, 1525, 1098 cm⁻¹; H NMR (300 MHz, CDCl₃) δ 6.37 (bs, 1 H, NH), 3.55-3.46 (m, 12 H, OCH₂), 3.25 (q, 2 H, J_H,H = 6.3 Hz, CH₂NHCO), 2.84 (bs, 2 H, NH₂), 2.77 (bt, 2 H, J_H,H = 6.3 Hz, CH₂NH₂), 1.94 (bs, 3 H, CH), 1.75 (bs, 6 H, CCH₂), 1.69 (m, 4 H, CH₂CH₂CH₂), 1.62 (m, 6 H, CH₂); C NMR (75.5 MHz, CDCl₃) δ 177.8 (CO), 70.3, 70.2, 70.1, 69.9, 69.3 (OCH₂), 40.3 (CH₂NH₂), 39.3 (CCO), 39.0 (CH), 37.7 (CH₂NHCOC), 36.4 (CCH₂), 32.0 (CH₂CH₂NH₂), 28.9 (CH₂CH₂NHCOC), 28.0 (CH₂); ESIMS: m/z 383.3 [M + H]⁺; Anal. Calcd for C₂₁H₃₈N₂O₆: C, 65.93; H, 10.01; N, 7.32. Found: C, 65.79; H, 9.73; N, 6.98.

N-(13-dansylamino-4,7,10-trioxa)tridecanyl-1-adamantanecarboxamide (7). A solution of 14 (263 mg, 0.687 mmol) in anhydrous DMF (15 mL) under Ar was cooled to 0 °C and triethylamine (92 μL, 0.742 mmol) and 5-dimethylaminonaphtalene-1-sulfonyl
chloride (186 mg, 0.742 mmol) were added. The reaction was stirred for 4 h. Subsequently the solvent was removed under reduced pressure and the residue was purified by column chromatography using 1:2 acetone-cyclohexane as eluent. Yield: 224 mg (53%); R_f 0.32 (1:2 acetone-cyclohexane). IR (ATR) ν_max 3282, 3056, 2906, 1635, 1525, 1425, 1095 cm^{-1}; \(^1\)H NMR (300 MHz, CDCl\(_3\)) δ 8.47 (d, \(J_{3,4} = 8.6\) Hz, 1 H, H-4\(_{\text{Naph}}\)), 8.28 (d, \(J_{8,9} = 8.6\) Hz, 1 H, H-9\(_{\text{Naph}}\)), 8.18 (dd, \(J_{2,3} = 7.3\) Hz, \(J_{2,4} = 0.8\) Hz, 1 H, H-2\(_{\text{Naph}}\)), 7.52-7.43 (m, 2 H, H-3\(_{\text{Naph}}\), H-8\(_{\text{Naph}}\)), 7.12 (d, \(J_{7,8} = 7.4\) Hz, 1 H, H-7\(_{\text{Naph}}\)), 6.35 (bt, 1 H, NHCO), 5.99 (t, 1 H, \(^3\)J\(_{H,H} = 5.9\) Hz, H-7\(_{\text{Naph}}\)), 3.59-3.46 (m, 12 H, OCH\(_2\)), 3.27 (q, 2 H, \(^3\)J\(_{H,H} = J_{NH,H} = 5.9\) Hz, CH\(_2\)NHCO), 2.97 (q, 2 H, \(J_{NH,H} = 5.9\) Hz, CH\(_2\)NHCO), 2.82 (s, 6 H, CH\(_3\)), 1.91 (bs, 3 H, CH), 1.74, 1.73 (s, 6 H, CCH\(_2\)), 1.71-1.56 (m, 4 H, CH\(_2\)CH\(_2\)NH), 1.60 (m, 6 H, CH\(_2\)); \(^{13}\)C NMR (75.5 MHz, CDCl\(_3\)) δ 177.0 (CO), 151.6 (C-6\(_{\text{Naph}}\)), 134.9 (C-1\(_{\text{Naph}}\)), 129.9-129.2 (C-2\(_{\text{Naph}}\), C-4\(_{\text{Naph}}\), C-5\(_{\text{Naph}}\), C-10\(_{\text{Naph}}\)), 127.9 (C-8\(_{\text{Naph}}\)), 123.0 (C-3\(_{\text{Naph}}\)), 119.0 (C-9\(_{\text{Naph}}\)), 114.9 (C-7\(_{\text{Naph}}\)), 70.4, 70.2 (2 C), 70.0, 69.7, 69.5 (OCH\(_2\)), 45.2 (CH\(_3\)), 41.7 (CH\(_2\)NHCO), 40.2 (CCO), 38.9 (CH), 37.6 (CH\(_2\)NHCO), 36.3 (CCH\(_2\)), 28.8 (CH\(_2\)CH\(_2\)NHCO), 28.5 (CH\(_2\)CH\(_2\)NHCO), 27.9 (CH\(_2\)); ESIMS: m/z 638.6 [M + Na]^+; Anal. Calcd for C\(_{33}\)H\(_{49}\)N\(_3\)O\(_6\)S: C, 64.36; H, 8.02; N, 6.82; S, 5.21. Found: C, 64.02; H, 7.90; N, 6.50; S, 4.88.
Figure S1. 1H and 13C NMR (500 MHz, 125.7 MHz, CD$_3$OD, 323 K) spectra of 6.
Figure S2. 1H and 13C NMR (500 MHz, 125.7 MHz, D$_2$O, 323 K) spectra of (ManS)$_3$-βCD.
Figure S3. 1H and 1D TOCSY spectra (500 MHz, D$_2$O, 323 K) of compound (ManS)$_3$-βCD.
Figure S4. 1H and 13C NMR (500 MHz, 125.7 MHz, CD$_3$OD) spectra of compound 8.
Figure S5. 1H and 13C NMR (300 MHz, 75.5 MHz, CDCl$_3$) spectra of compound 16.
Figure S6. 1H and 13C NMR (300 MHz, 75.5 MHz, CDCl$_3$) spectra of compound 14.
Figure S7. 1H and 13C NMR (300 MHz, 75.5 MHz, CDCl$_3$) spectra of compound 7.
Figure S8. ESI-MS spectra of compounds 6 (A), (ManS)₃-βCD (B), 7 (C), and 8 (D).
Figure S9. (a) Stacked 1H RMN spectra (anomeric region) of (ManS)$_3$-βCD upon increasing concentration of 6S-NOI-NJ and (b) plot of the $\delta$$_{H-1(I)}$ variation vs. [6S-NOI-NJ].
Figure S10. (a) Stacked 1H RMN spectra (anomeric region) of (ManS)$_3$-βCD upon increasing concentration of 6S-NAdB-NJ and (b) plot of the δ_{H-1} variation vs. [6S-NAdB-NJ], with indication of the averaged K_{as}.

$$K_{as} = 1019 \pm 196 \text{ M}^{-1}$$
Figure S11. Lineweaver-Burk plot for K_i determination (9.9 μM) of complex (ManS)$_3$-βCD:6S-NOI-NJ against bovine liver β-glucosidase (pH 7.3).

Figure S12. Lineweaver-Burk Plot for K_i determination (0.29 μM) of complex (ManS)$_3$-βCD:6S-NOI-NJ against almonds β-glucosidase (pH 7.3).
Figure S13. Lineweaver-Burk plot for K_i determination (5.8 μM) of complex (ManS)$_2$-βCD:6S-NAdB-NJ against almonds β-glucosidase (pH 7.3).
Figure S14. Inhibition of the adhesion of rhMMR to an immobilized polymannoside (yeast mannan) in the presence of increasing concentration of (ManS)$_3$-βCD (♦) in comparison with representative members of the high mannose oligosaccharide family (Man5 and Man6, □ and ▲; structures are also depicted).