Supporting information

pH Sensitive Fluorescent Phototrigger based on benzo[b]acridine-12-yl) methanol (BAM): Synthesis, Photophysical, Photochemical and Biological Applications

[a]Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur–721302, India.
[b]Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur–721302, India

Phone: (+) 91-3222-282324; Fax: (+) 91-3222-282252

E-mail: ndpradeep@chem.iitkgp.ernet.in (NDPS)

Supplementary Data

Contents

<table>
<thead>
<tr>
<th></th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Characterization data of 12-methylbenzo[a]acridine (2)</td>
<td>S2</td>
</tr>
<tr>
<td>2. Characterization data of 12-(bromomethyl)benzo[a]acridine (3)</td>
<td>S3</td>
</tr>
<tr>
<td>3. Characterization data of carboxylate esters (5a-f)</td>
<td>S4-S9</td>
</tr>
<tr>
<td>4. Characterization data of esters of amino acids (7a-b)</td>
<td>S10-S11</td>
</tr>
<tr>
<td>5. UV-vis absorption spectra of esters (5c, 5d, 7a & 7b)</td>
<td>S12</td>
</tr>
<tr>
<td>6. Emission spectra of esters (5c, 5d, 7a & 7b)</td>
<td>S12</td>
</tr>
<tr>
<td>7. UV-vis and NMR spectra of photolysis of ester (5d)</td>
<td>S12</td>
</tr>
<tr>
<td>8. Photophysical and photochemical data of 5c in HEPES buffer</td>
<td>S13</td>
</tr>
<tr>
<td>9. HPLC stability data of BAM-Cbl in cellular environment</td>
<td>S14</td>
</tr>
<tr>
<td>10. Characterization data of photo product (benzo[a]acridin-12-yl)methanol (8)</td>
<td>S15</td>
</tr>
<tr>
<td>11. Characterization data of (benzo[a]acridin-12-yl)methyl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate (10)</td>
<td>S16</td>
</tr>
</tbody>
</table>
\(^1\)H NMR spectrum of 12-methylbenzo[a]acridine (2) (CDCl\(_3\), 200 MHz)

\(^{13}\)C NMR spectrum of 12-methylbenzo[a]acridine (2) (CDCl\(_3\), 50 MHz).
1H NMR spectrum of 12-(bromomethyl)benzo[a]acridine (3) (CDCl$_3$, 200 MHz)

13C NMR spectrum of 12-(bromomethyl)benzo[a]acridine (3) (CDCl$_3$, 50 MHz)
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 2-phenylacetate (5a) (CDCl$_3$, 200 MHz).

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 2-phenylacetate (5a) (CDCl$_3$, 50 MHz).
H NMR spectrum of (benzo[a]acridin-12-yl)methyl benzoate (5b) (CDCl₃, 200 MHz).

C NMR spectrum of (benzo[a]acridin-12-yl)methyl benzoate (5b) (CDCl₃, 100 MHz).

H NMR spectrum of (benzo[a]acridin-12-yl)methyl benzoate (5b) (CDCl₃, 200 MHz).

C NMR spectrum of (benzo[a]acridin-12-yl)methyl benzoate (5b) (CDCl₃, 100 MHz).
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-methylbenzoate (5c) (CDCl$_3$, 200 MHz).

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-methylbenzoate (5c) (CDCl$_3$, 50 MHz).
H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-methoxybenzoate (5d) (CDCl₃, 200 MHz)

¹³C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-methoxybenzoate (5d) (CDCl₃, 100 MHz)
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-vinylbenzoate (5e) (CDCl$_3$, 200 MHz)

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-vinylbenzoate (5e) (CDCl$_3$, 100 MHz)
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-nitrobenzoate (5f) (CDCl$_3$, 200 MHz)

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-nitrobenzoate (5f) (CDCl$_3$, 50 MHz)
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-(pivalamido)butanoate (7a) (CDCl$_3$, 200 MHz)

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-(pivalamido)butanoate (7a) (CDCl$_3$, 100 MHz)
1H NMR spectrum of (R)-benzo[a]acridin-12-ylmethyl 2-(tert-butoxycarbonylamino) propanoate (7b) (CDCl$_3$, 200 MHz)

13C NMR spectrum of (R)-benzo[a]acridin-12-ylmethyl 2-(tert-butoxycarbonylamino) propanoate (7b) (CDCl$_3$, 100 MHz)
Figure-S1. UV-vis absorption spectra of representative esters (5c-5d) and (7a-b) in MeOH (2.0×10^{-4} M)

Figure-S2. Emission spectra of representative esters (5c-5d) and (7a-b) in MeOH (2.0×10^{-4} M)
Figure-S3. UV-vis spectral change of ester 5d (2x10^{-4} M) in ACN-H_2O (50-50 v/v) at regular intervals of irradiation (0-150 min).

Figure-S4.a. Normalized UV-vis absorption spectrum (black line) and emission spectrum (red line) of ester 5c in ACN:HEPES (30:70) b. Fluorescence spectra of the ester 5c in ACN and in increasing percentage of HEPES buffer in ACN (2.0 × 10^{-5} M).
Table-S1. Photolytic data of BAM esters (5c) on irradiation (≥410 nm) in acetonitrile-HEPES (30:70 v/v)

<table>
<thead>
<tr>
<th>Ester</th>
<th>Carboxylic acid</th>
<th>Time of photolysis (min)</th>
<th>% of acid generated</th>
<th>Quantum yield ((\phi_p))</th>
</tr>
</thead>
<tbody>
<tr>
<td>5c</td>
<td>p-CH(_3)C(_6)H(_4)CO(_2)H</td>
<td>400</td>
<td>90</td>
<td>0.106</td>
</tr>
</tbody>
</table>

\(^a \) % of carboxylic acid released as determined by HPLC, \(^b \) photochemical quantum yield for the generated carboxylic acids (error limit within ± 5%).

Figure-S5. HPLC profile of BAM-Cbl stability in DMSO supplemented with 10% fetal bovine serum and incubated at 37 °C in the dark for a period of 10 days (X axis is offset by 10 s and the Y axis is offset by 10 mAU for better visualization).
1H NMR spectrum of photo product (benzo[a]acridin-12-yl)methanol (8) (CDCl$_3$, 200 MHz)

13C NMR spectrum of photo product (benzo[a]acridin-12-yl)methanol (8) (CDCl$_3$, 50 MHz)
1H NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate (10) (CDCl$_3$, 200 MHz)

13C NMR spectrum of (benzo[a]acridin-12-yl)methyl 4-(4-(bis(2-chloroethyl)amino)phenyl)butanoate (10) (CDCl$_3$, 100 MHz)