Hydroxyl Radical Induced Oxidation of Theophylline in Water: A Kinetic and Mechanistic Study

M. M. Sunil Paula, U. K. Aravindb, G. Pramodc, A. Sahad, and C. T. Aravindakumara,e

aSchool of Environmental Sciences, Mahatma Gandhi University, Kottayam.
bAdvanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam.
cDepartment of Chemistry, N.S.S. Hindu College, Changanachery, India
dUGC-DAE Consortium for Scientific Research, Kolkata Centre, Kolkata.
eInter University Instrumentation Centre, Mahatma Gandhi University, Kottayam.

(Electronic Supplementary Information)
Table S1 - The spectral and kinetic parameters of the reaction of $^\cdot$OH, $\text{SO}_4^{\cdot-}$, N_3^{\cdot} and $\text{O}^{\cdot-}$ with theophylline

<table>
<thead>
<tr>
<th>Radical</th>
<th>pH</th>
<th>λ_{max} / nm</th>
<th>k_2 / 10^9 dm3 mol$^{-1}$ s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^\cdot$OH</td>
<td>5.9</td>
<td>330, 500</td>
<td>8.22 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>10.2</td>
<td>340</td>
<td>7.11 ± 0.07</td>
</tr>
<tr>
<td>$\text{SO}_4^{\cdot-}$</td>
<td>6</td>
<td>350</td>
<td>7.51 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>9.3</td>
<td>350</td>
<td>5.37 ± 0.03</td>
</tr>
<tr>
<td>N_3^{\cdot}</td>
<td>4</td>
<td>350</td>
<td>4.05 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>340</td>
<td>7.61 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>9.6</td>
<td>350</td>
<td>8.42 ± 0.06</td>
</tr>
<tr>
<td>$\text{O}^{\cdot-}$</td>
<td>~ 13</td>
<td>320, 350</td>
<td>1.95 ± 0.02</td>
</tr>
</tbody>
</table>
Figure S1 – MS/MS spectrum of 1-methylxanthine (ii)
Figure S2 - MS/MS spectrum of 3-methylxanthine (iii)
Figure S3 - MS/MS spectrum of 1,3-dimethyluric acid (i)
Figure S4 - Mass spectrum of 1,3-dimethyluric acid (i) in positive ionization mode
Figure S5 - Mass spectrum of 1-methylxanthine (ii) in negative ionization mode
Figure S6 - Mass spectrum of 3-methylxanthine (iii) in positive ionization mode
Figure S7 - MS/MS spectrum of 1-dimethyluric acid (iv) and 3-dimethyluric acid (v) in positive ionization mode.
Figure S8 - Mass spectrum of xanthine (vi) in positive ionization mode
Figure S9 - Mass spectrum of 1/3-methyl tetrahydro-1H-purine-2,6-dione (vii) in negative ionization mode
Figure S10 - Mass spectrum of 8-hydroxy-1/3-methyl-3,7,8,9-tetrahydro-1H-purine-2,6-dione (viii) in positive ionization mode
Figure S11 - Mass spectrum of 5/6-amino derivative of 5/6-hydroxy-1,3-dimethylpyrimidine-2,4(1H,3H)-dione (ix) in positive ionization mode
Figure S12 - Mass spectrum of 5/6-amino derivative of 1/3- methylpyrimidine-2,4(1H,3H)-dione (x) in positive ionization mode
Figure S13 - Mass spectrum of 5/6-aminopyrimidine-2,4(1H,3H)-dione (xi) and 5/6-amino derivative of 5/6-hydroxydihydropyrimidine-2,4(1H,3H)-dione (xii) in positive ionization mode
Figure S14 - Mass spectrum of 5/6-aminopyrimidine-2,4(1H,3H)-dione (xi) in negative ionization mode
Figure S15 - Mass spectrum of 1/3-methylpyrimidine-2,4(1H,3H)-dione (xiii) in positive ionization mode
Figure S16 - Mass spectrum of 5,6-diaminopyrimidine-2,4(1H,3H)-dione (xiv) in positive ionization mode
Figure S17 - Decay traces at 320 nm (Red) and 350 nm (Black) in the case of reaction of O$^\cdot$ with theophylline.
Figure S18 - Transient absorption spectrum of theophylline ($1 \times 10^{-4} \text{ mol dm}^{-3}$) recorded during its reaction with SO$_4^{\bullet-}$ after (●) 347 μs (pH 6.0) and with N$_3^{\bullet}$ after (○) 328 μs (pH 6.1).
Figure S19 - UV-Vis Spectrum of theophylline at pH 6 and 10.1.
Figure S20- Plot of absorbance of transient at 330 nm obtained by the reaction of theophylline with $^\bullet$OH against pH.
Figure S21 - Percentage degradation of theophylline in N₂ purged (Red) and aerated (Black) conditions as a function of time.