Supporting information for

Development of a New rhodamine-based FRET Platform and the Applications for Cu²⁺ probe

Xiaoyu Guan, Weiyin Lin,* Weimin Huang

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China

E-mail: weijinglin2013@163.com
Fig. S1 Cytotoxicity assays of ratiometric probe FRET-1 at different concentrations (a: 0 μM; b: 5 μM; c: 10 μM; d: 20 μM; e: 30 μM; f: 50 μM; f: 100 μM) for MCF-7 cells.

Fig. S2 Absorption spectral changes of novel ratiometric FRET-1 (1 μM) upon addition of Cu^{2+} (0- 40 equiv.) in HEPES buffer (pH 7.0, containing 20% CH₃CN as a co-solvent).
Figure S3. 1H NMR spectrum of compound a.

Figure S4. 13C NMR spectrum of compound a.
Figure S5. 1H NMR spectrum of compound FRET-dyad.

Figure S6. 13C NMR spectrum of compound FRET-dyad.
Figure S7. 1H NMR spectrum of FRET-1.

Figure S8. 13C NMR spectrum of FRET-1.