Supporting Information

Improved hemicryptophane hosts for stereoselective recognition of glucopyranosides.

Aline Schmitt, Olivier Perraud, Elina Payet, Bastien Chatelet, Benjamin Bousquet, Marion Valls, Daniele Padula, Lorenzo Di Bari, Jean-Pierre Dutasta* and Alexandre Martinez*

aLaboratoire de Chimie, CNRS, École Normale Supérieure de Lyon, 46, Allée d’Italie, F-69364 Lyon 07, France.
bInstitute of Organic Chemistry and Biochemistry, Academy of Sciences, Flemingovo náměsti 2, 16610 Prague (Czech Republic)
cDipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Risorgimento 35, I-56126 Pisa, Italy.
alexandre.martinez@ens-lyon.fr; jean-pierre.dutasta@ens-lyon.fr

Content

1/ Spectral characterization

1.1) 1H and 13C NMR spectra of compound P-RRR-2
1.2) 1H and 13C NMR spectra of compound M-RRR-2
1.3) 1H and 13C NMR spectra of compound P-SSS-2
1.4) 1H and 13C NMR spectra of compound M-SSS-2
1.5) 1H and 13C NMR spectra of compound 9
1.7) 1H and 13C NMR spectra of compound 8
1.8) 1H and 13C NMR spectra of compound 7

2/ 1H NMR titrations

3/ Job’s Plot

4/ ECD
3/ Spectral characterization

3.1) NMR spectra of P-RRR-2
 a) 1H NMR spectrum of P-RRR-2
b) 13C NMR spectrum of P-RRR-2
3.2) NMR spectra of \textit{M-RRR-2}

a) 1H NMR spectrum of \textit{M-RRR-2}
b) 13C NMR spectrum of M-RRR-2
3.3) NMR spectra of \(P-SSS-2 \)

\[a) \text{ } ^1H \text{ NMR spectrum of } P-SSS-2 \]
b) 13C NMR spectrum of P-SSS-2
3.4) NMR spectra of M-SSS-2

a) 1H NMR spectrum of M-SSS-2
b) 13C NMR spectrum of M-SSS-2
3.5) NMR spectra of 9

a) 1H NMR spectrum of 9
b) 13C NMR spectrum of 9
3.6) NMR spectra of 8

a) 1H NMR spectrum of 8
b) 13C NMR spectrum of 8
3.7) NMR spectra of 7
 a) 1H NMR spectrum of 7
b) 13C NMR spectrum of 7
1H NMR titrations:

Solutions of hosts (2.0 mM in CDCl$_3$, 500 µL) were titrated in NMR tubes with small aliquots of concentrated solutions (10 or 20 mM in CDCl$_3$) of guests. Complexation induced shifts $\Delta \delta$ of the aromatic protons or the NH protons of the host were measured after each addition and plotted as a function of the guest/host ratio. Mathematical analysis of data and graphic representation of results were performed using the HypNMR 2008 program,[2] handling general host-guest association equilibria under fast exchange regime on the NMR time scale. This allows obtaining the binding constant K_a. Complexation induced shifts were measured on the aromatic protons or the NH protons since in all these cases, they displayed sharp signals and no overlapping region.

Titration Plots: experimental (symbols) and calculated (lines) chemical shifts are shown in Figure 5 of the article.

Results

Receptor: M-SSS-2
guest: OctαGlc
HypNMR2008
Refinement concluded
Converged in 4 iterations with sigma = 0.588186

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>standard deviation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 log beta(HCsucr)</td>
<td>2.7745</td>
<td>0.0924</td>
<td>2.77(9)</td>
</tr>
</tbody>
</table>

Receptor: M-SSS-2
guest: OctβGlc
HypNMR2008
Refinement concluded
Converged in 5 iterations with sigma = 0.877167

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>standard deviation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 log beta(HCsucr)</td>
<td>3.2202</td>
<td>0.0973</td>
<td>3.22(1)</td>
</tr>
</tbody>
</table>

Receptor: P-SSS-2
guest: OctαGlc
Refinement concluded
Converged in 5 iterations with sigma = 0.091442

<table>
<thead>
<tr>
<th></th>
<th>value</th>
<th>standard deviation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 beta(HCsucr)</td>
<td>-2.8E+01</td>
<td>0.2407</td>
<td>Log beta cannot be updated</td>
</tr>
<tr>
<td>Receptor: P-SSS-2</td>
<td>guest: OctβGlc</td>
<td>HypNMR2008</td>
<td>Refinement concluded</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>standard deviation</td>
</tr>
<tr>
<td>1 log beta(HCsucr)</td>
<td>2.2619</td>
<td>0.0825</td>
<td>2.26(8)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor: M-RRR-2</th>
<th>guest: OctαGlc</th>
<th>HypNMR2008</th>
<th>Refinement</th>
<th>Converged in 4 iterations with sigma = 0.067908</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>standard deviation</td>
<td>Comments</td>
</tr>
<tr>
<td>1 log beta(HCsucr)</td>
<td>1.7467</td>
<td>0.1071</td>
<td>1.7(1)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor: M-RRR-2</th>
<th>guest: OctβGlc</th>
<th>HypNMR2008</th>
<th>Refinement concluded</th>
<th>Converged in 4 iterations with sigma = 0.115243</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>standard deviation</td>
<td>Comments</td>
</tr>
<tr>
<td>1 log beta(HCsucr)</td>
<td>2.2822</td>
<td>0.0427</td>
<td>2.28(4)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor: P-RRR-2</th>
<th>guest: OctαGlc</th>
<th>HypNMR2008</th>
<th>Refinement concluded</th>
<th>Converged in 3 iterations with sigma = 0.068269</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>standard deviation</td>
<td>Comments</td>
</tr>
<tr>
<td>1 log beta(HCsucr)</td>
<td>1.528</td>
<td>0.066</td>
<td>1.53(7)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Receptor: P-RRR-2</th>
<th>guest: OctβGlc</th>
<th>HypNMR2008</th>
<th>Refinement concluded</th>
<th>Converged in 4 iterations with sigma = 0.075097</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>value</td>
<td>standard deviation</td>
<td>Comments</td>
</tr>
<tr>
<td>1 log beta(HCsucr)</td>
<td>2.5841</td>
<td>0.0428</td>
<td>2.58(4)</td>
<td></td>
</tr>
</tbody>
</table>
4/ Job’s Plot

\(^1\)H NMR continuous variation methods (Job’s plot)
Stock solutions (1.0 mM in CDCl\(_3\)) of 1 and of the guest were prepared and mixed in NMR tubes in different ratios. In this way, relative concentrations \(\alpha\) were varied continuously but their sum was kept constant (1.0 mM). \(^1\)H NMR spectra were recorded for each sample and values of host’s chemical shift \(\delta_{\text{obs}}\) were measured. Job’s plots were obtained by plotting \((\delta_{\text{obs}} - \delta_{\text{free}})\alpha\) versus \(\alpha\), where \(\delta_{\text{free}}\) is the chemical shift of the proton in the uncomplexed host. The stoichiometry of the complexes was obtained from the value of the molar fraction \(\alpha\) which corresponds to a maximum of the curve: a 1:1 complexation is obtained for \(\alpha_{\text{max}} = 0.5\).

![Job's plot](image)

Figure S1. Job’s plot of \(M-\text{SSS-2}\) with Oct\(\beta\)Glc. The chemical induced shifts \(\Delta\delta\) of the H\(_4\) protons of \(M-\text{SSS-2}\) were measured, \(\alpha\) is the molar ratio of \(M-\text{SSS-2}\).
Comparison between the calculated ECD spectra of M-SSS-2 calculated on fully optimized and hydrogen-only optimized structures (at CAM/SVP level). Small differences can be observed between the two data sets. Such small differences between the spectra calculated on the fully optimized and on the hydrogen optimized structures allowed us to use the former in order to save time in the computational procedure.

References