Supplementary Information for

Discrimination of adenine nucleotides and pyrophosphate in water by a zinc complex of an anthracene-based cyclophane

Ping Hu, Shengjun Yang and Guoqiang Feng*

Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China. E-mail: gf256@mail.ccnu.edu.cn

Table of Contents

1.	Fluorescence changes of cyclophane 1 toward addition of various metal ionPage 2
2.	Facilitation of Zn ²⁺ coordination to 1 by ATP, ADP and PPiPage 2-4
3.	Fluorescence titration of 1-2Zn with ADP, AMP, PPi and other anionsPage 5-8
4.	Sensing of ATP in the presence of excess of AMP, ADP and PPiPage 8-9
5.	NMR and Mass spectra of cyclophane compounds 1 and 2. Page 10-12
6.	Equation used for the determination of the apparent association constants (K_a) Page 12

1. Fluorescence changes of cyclophane 1 toward addition of various metal ions.

Fig. S1. The relative fluorescent intensity (I/I₀) of macrocyclic ligand 1 (10 μ M) at $\lambda_{em} = 420$ nm upon the addition of two equiv. of metal anions. I₀ and I are the fluorescent intensity of **1** at $\lambda_{em} = 420$ nm before and after addition of metal anions (20 μ M). Metal anions are Co²⁺, Cu²⁺, Hg²⁺, Ag⁺, Ni²⁺, Cd²⁺, Pb²⁺, Fe²⁺, Ce²⁺, Mn²⁺, Sr²⁺, Cr²⁺, Li⁺, Mg²⁺, Na⁺, Zn²⁺, and only elemental symbol showed in the figure. All the spectra were measured in pure aqueous solution of 10 mM HEPES buffer (pH 7.2) at 25 °C with $\lambda_{ex} = 380$ nm.

2. Facilitation of Zn²⁺ coordination to 1 by ATP, ADP and PPi.

Fig. S2a Fluorescence spectra changes of cyclophane 1 (10 μ M) upon titration of Zn²⁺ (0-2.5 mM) in pure aqueous solution of 10 mM HEPES buffer (pH 7.2) at 25°C with $\lambda_{ex} = 380$ nm.

Fig. S2b Job's plot examined between ligand 1 and Zn^{2+} ([1] + [Zn^{2+}] = 10 μ M) in 10 mM HEPES buffer (pH 7.2) at 25 °C, λ_{ex} = 380 nm, λ_{em} = 427 nm. This experiment indicates a 1:2 binding mode between ligand 1 and Zn^{2+} ; in other words, they formed a dinuclear zinc complex.

Fig. S2c Fluorescence changes of cyclophane 1 (10 μ M) upon titration of Zn²⁺ in the presence of 2 equiv. of ATP. All experiments were measured in pure aqueous solution of 10 mM HEPES buffer (pH 7.2) at 25°C with $\lambda_{ex} = 380$ nm.

Fig. S2d Fluorescence changes of cyclophane **1** (10 μ M) upon titration of Zn²⁺ in the presence of 5 equiv. of ADP. All experiments were measured in pure aqueous solution of 10 mM HEPES buffer (pH 7.2) at 25°C with $\lambda_{ex} = 380$ nm.

Fig. S2e Fluorescence changes of cyclophane **1** (10 μ M) upon titration of Zn²⁺ in the presence of 10 equiv. of PPi. All experiments were measured in pure aqueous solution of 10 mM HEPES buffer (pH 7.2) at 25°C with $\lambda_{ex} = 380$ nm.

3. Fluorescence titration of 1-2Zn with ADP, AMP and other anions

Fig. S3. Fluorescence spectra changes of **1-2Zn** (10 μ M) upon the addition of various anions (as stated in each Figure) in 10 mM HEPES buffer (pH 7.2) at 25 °C, $\lambda_{ex} = 380$ nm. Insert in (a)-(c): Fluorescent intensity changes against the phosphate concentrations and Job's plot examined between **1-2Zn** and phosphate anions ([**1-2Zn**] + [anion] = 10 μ M).

4. Sensing of ATP in the presence of excess of AMP, ADP and PPi.

Fig. S4. Fluorescence spectra changes of **1-2Zn** (10 μ M) upon the addition of ATP in the presence of (a) 200 μ M AMP, (b) 50 μ M ADP, (c) 100 μ M PPi in 10 mM HEPES buffer (pH 7.2) at 25 °C, $\lambda_{ex} = 380$ nm. Insert: Fluorescent intensity changes at 427 nm against the concentration of ATP added.

5. NMR and Mass spectra of cyclophane compound 1 and 4.

(b) ¹³C NMR spectrum of cyclophane compound **1** in CDCl₃.

50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000 Counts vs. Mass-to-Charge $(\mathrm{m/z})$

(c) HR-MS spectrum of cyclophane compound 1.

(e) HR-MS spectrum of Schiff base compound 4.

Figure S5. NMR and Mass spectra of compound 1 and 4.

6. Equation used for the determination of the apparent association constants (K_a)

$$R + A \xrightarrow{K_{a}} C \quad (1)$$

$$R = \text{Receptor}; \ A = \text{Anion}; \ C = \text{Complex}; \quad K_{a} = \frac{1}{K_{d}}$$

$$\frac{I}{I_{0}} = 1 + 0.5 * m * \left\{ ([A] + [R]_{0} + K_{d}) - \sqrt{([A] + [R]_{0} + K_{d})^{2} - 4[R]_{0}[A]} \right\} \quad (2)$$

R is the receptor (**1-2Zn** in this work), A is anion, C is the resulting 1:1 binding complex (Equation 1). Equation (2) is used for a nonlinear fitting of the titration data in Fig.3b to obtain K_d values, where [A] is the concentration of anions added, [R]₀ is the initial concentration of **1-2Zn** (set as [R]₀ = 10 μ M), K_d is the dissociation constants. (Ref: K. A. Connors, *Binding Constants*, Wiley, New York, 1987.)