Supporting Information for

Copper-Catalyzed Highly Efficient Ester Formation from Carboxylic acids /Esters and Formates

Jun Liu, a Changdong Shao, a Yanghui Zhang, a,b,* Guangfa Shi, a Shulei Pan a

Department of Chemistry, Tongji University, 1239 Siping Road, Shanghai, 200092, China. *To correspondence should be addressed. Email:

zhangyanghui@tongji.edu.cn

Table of Contents

General Information 2

I. General procedure for screening of reaction conditions 2

II. General procedure for Cu-Catalyzed esterification/transesterification of carboxylic acids/esters 3

III. Characterization of synthesized compounds 6

IV. NMR spectra 14
General Information: Cu(O Tf)$_2$ was purchased from Accela ChemBio Co., Ltd.. Solvent was dried by molecular sieve 5A. Unless otherwise noted, the other commercial materials were used without further purification. 1H NMR and 13C NMR spectra were recorded with Bruker ARX400. High resolution mass spectra were measured on Bruker MicroTOF II ESI-TOF mass spectrometer. 1H NMR spectra were recorded in CDCl$_3$ and referenced to residual CHCl$_3$ at 7.26 ppm, and 13C NMR spectra were referenced to the central peak of CDCl$_3$ at 77.0 ppm. Multiplicities are reported using the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad resonance.

I. General procedure for screening of reaction conditions: A 50 mL sealed tube (with a Teflon high pressure valve) equipped with a magnetic stir bar was charged with Cu(O Tf)$_2$ (18.1 mg, 0.05 mmol), followed by benzoic acid (61.1 mg, 0.5 mmol), n-pentyl formate, TBHP, and solvents. After the reaction mixture was stirred at 130 °C for 12 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate and water and then filtered through a small pad of Celite. The filtrate was washed with saturated aqueous NaHCO$_3$ (5 mL) and brine (5 mL, twice). The organic phase was dried (Na$_2$SO$_4$) and concentrated in vacuo. The yield was determined by 1H NMR analysis of crude product using CHCl$_3$ as the internal standard.
Table 1. Survey of Reaction Conditions

![Chemical structure](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>2a</th>
<th>solvent</th>
<th>oxidant</th>
<th>yield %<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0 equiv.</td>
<td>1,4-dioxane</td>
<td>K$_2$S$_2$O$_8$</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>4.0 equiv.</td>
<td>CH$_2$CN</td>
<td>K$_2$S$_2$O$_8$</td>
<td>NR</td>
</tr>
<tr>
<td>3</td>
<td>4.0 equiv.</td>
<td>DMA</td>
<td>K$_2$S$_2$O$_8$</td>
<td>NR</td>
</tr>
<tr>
<td>4</td>
<td>4.0 equiv.</td>
<td>DMSO</td>
<td>K$_2$S$_2$O$_8$</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>K$_2$S$_2$O$_8$</td>
<td>27</td>
</tr>
<tr>
<td>6</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>(NH$_4$)$_2$SO$_4$</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>oxone</td>
<td><3</td>
</tr>
<tr>
<td>8</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>AcOOH</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>DCP</td>
<td>78</td>
</tr>
<tr>
<td>10</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>DTBP</td>
<td>91</td>
</tr>
<tr>
<td>11</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>54<sup>b</sup></td>
</tr>
<tr>
<td>13</td>
<td>4.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td><3<sup>c</sup></td>
</tr>
<tr>
<td>14</td>
<td>3.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>93(85)<sup>d</sup></td>
</tr>
<tr>
<td>15</td>
<td>2.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>66</td>
</tr>
<tr>
<td>16</td>
<td>1.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>49</td>
</tr>
<tr>
<td>17</td>
<td>3.0 equiv.</td>
<td>DCE</td>
<td>----</td>
<td>24</td>
</tr>
<tr>
<td>18</td>
<td>3.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td><3<sup>a</sup></td>
</tr>
<tr>
<td>19</td>
<td>3.0 equiv.</td>
<td>DCE</td>
<td>TBHP</td>
<td>67<sup>c</sup></td>
</tr>
</tbody>
</table>

^a The yields were determined by 1H NMR analysis of crude products using CHCl$_3$/CHCl$_2$ as the internal standard. DBPT = tert-Butyl peroxide, TBHP = tert-Butyl hydroperoxide, DCP = Dicumyl peroxide, DCE = 1,2-Dichloroethane.

Reaction condition: 1a (0.5 mmol), 2a (3.0 equiv), Cu(OTf)$_2$ (10% mol), TBHP (2.0 equiv), 130 °C, 12 h, all of the reactions were run under air.^b Cu(OTf)$_2$ = 5% mol, ^c Cu(OTf)$_2$ = 1% mol, ^d isolated yield.^e No Cu(OTf)$_2$ / 110 °C.

II. General procedure for Cu-catalyzed esterification/transesterification of carboxylic acids/esters: A 50 mL sealed tube (with a Teflon high pressure valve) equipped with a magnetic stir bar was charged with Cu(OTf)$_2$ (18.1 mg, 0.05 mmol) followed by carboxylic acid or benzoates (0.5 mmol), formats (1.5 mmol), THBP (100.2 μL, 1.0 mmol), and DCE (1.0 mL). After the reaction mixture was stirred at 130°C for 12 h, it was allowed to cool to ambient temperature. The reaction mixture was diluted with ethyl acetate and water and then filtered through a small pad of Celite. The filtrate was washed with saturated aqueous NaHCO$_3$ (5 mL) and brine (5
mL, twice). The organic phase was dried (Na$_2$SO$_4$) and concentrated *in vacuo*. The residue was purified by silica gel preparative TLC to give the corresponding product.

Scheme 1. Copper-Catalyzed Pentylation of Various Aromatic Carboxylic Acids.

![Chemical reaction scheme]

Scheme 1. Copper-Catalyzed Pentylation of Various Aromatic Carboxylic Acids.
Table 2 Copper-Catalyzed Esterification of Benzoic Acids with Various Formates.

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>product</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2b</td>
<td>3ab</td>
<td>82%</td>
</tr>
<tr>
<td>2</td>
<td>2c</td>
<td>3ac</td>
<td>51%b</td>
</tr>
<tr>
<td>3</td>
<td>2d</td>
<td>3ad</td>
<td>47%</td>
</tr>
<tr>
<td>4</td>
<td>2e</td>
<td>3ae</td>
<td>0%</td>
</tr>
</tbody>
</table>

Table 3 Copper-Catalyzed Transesterification of Benzoates with Pentyl Formate.

<table>
<thead>
<tr>
<th>entry</th>
<th>substrate</th>
<th>yield</th>
<th>entry</th>
<th>substrate</th>
<th>yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3af</td>
<td>91%</td>
<td>4</td>
<td>3ah</td>
<td>86%</td>
</tr>
<tr>
<td>2</td>
<td>3ag</td>
<td>72%</td>
<td>5</td>
<td>3ai</td>
<td>74%</td>
</tr>
<tr>
<td>3</td>
<td>3ac</td>
<td>92%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
III. Characterization of the synthesized compounds

pentyl benzoate (3aa)

\[
\text{Colorless oil; } ^1H \text{ NMR (400 MHz, CDCl}_3): \delta = 8.05 (d, J = 7.8 \text{ Hz}, 2H), 7.55 (m, 1H), 7.44 (m, 2H), 4.32 (t, J = 6.7 \text{ Hz}, 2H), 1.84-1.69 (m, 2H), 1.49-1.31 (m, 4H), 0.93 (t, J = 6.7 \text{ Hz}, 3H). ^{13}C \text{ NMR (100 MHz, CDCl}_3): \delta = 166.64, 132.73, 130.52, 129.49, 128.27, 65.08, 28.41, 28.18, 22.34, 13.95. \text{ HRMS (ESI-TOF) } m/z: \text{ calcd for C}_{12}H_{16}NaO}_2^+: 215.1043 (M + Na)^+, \text{ found: 215.1042.}
\]

pentyl 2-methylbenzoate (3ba)

\[
\text{Colorless oil; } ^1H \text{ NMR (400 MHz, CDCl}_3): \delta = 7.92-7.90 (m, 1H), 7.43-7.36 (m, 1H), 7.29-7.20 (m, 2H), 4.30 (t, J = 6.8 \text{ Hz}, 2H), 2.60 (s, 3H), 1.81-1.71 (m, 2H), 1.49-1.33 (m, 4H), 0.93 (t, J = 7.2 \text{ Hz}, 3H). ^{13}C \text{ NMR (100 MHz, CDCl}_3): \delta = 167.77, 139.96, 131.75, 131.60, 130.47, 130.02, 125.63, 64.88, 28.43, 28.26, 22.34, 21.70, 13.96. \text{ HRMS (ESI-TOF) } m/z: \text{ calcd for C}_{13}H_{18}NaO}_2^+: 229.1199 (M + Na)^+, \text{ found: 229.1201.}
\]

pentyl 3-methylbenzoate (3ca)

\[
\text{Colorless oil; } ^1H \text{ NMR (400 MHz, CDCl}_3): \delta = 7.91-7.81 (m, 2H), 7.40-7.28 (m, 2H), 4.31 (t, J = 6.8 \text{ Hz}, 2H), 2.40 (s, 3H), 1.83-1.71 (m, 2H), 1.49-1.30 (m, 4H), 0.93 (t, J = 7.2 \text{ Hz}, 3H). ^{13}C \text{ NMR (100 MHz, CDCl}_3): \delta = 166.84, 138.05, 133.50, 130.47, 130.04, 128.18, 126.64, 65.04, 28.44, 28.18, 22.35, 21.25, 13.96. \text{ HRMS (ESI-TOF) } m/z: \text{ calcd for C}_{13}H_{18}NaO}_2^+: 229.1199 (M + Na)^+, \text{ found: 229.1196.}
\]

pentyl 4-methylbenzoate (3da)

\[
\text{Colorless oil; } ^1H \text{ NMR (400 MHz, CDCl}_3): \delta = 7.94 (d, J = 8.0 \text{ Hz}, 2H), 7.23 (d, J = 8.0 \text{ Hz}, 2H), 4.30 (t, J = 6.8 \text{ Hz}, 2H), 2.40 (s, 3H), 1.83-1.70 (m, 2H), 1.49-1.32 (m, 4H), 0.93 (t, J = 6.8 \text{ Hz}, 3H). ^{13}C \text{ NMR (100 MHz, CDCl}_3): \delta = 166.70, 143.32,
pentyl 2-fluorobenzoate (3ea)

Colorless oil; \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.97-7.87 \) (m, 1H), \(7.55-7.43 \) (m, 1H), \(7.23-7.07 \) (m, 2H), \(4.32 \) (t, \(J = 6.8 \) Hz, 2H), \(1.82-1.68 \) (m, 2H), \(1.48-1.31 \) (m, 4H), \(0.92 \) (t, \(J = 6.8 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, CDCl\(_3\)) \(\delta = 164.46 \) (d, \(J_{C,F} = 3.6 \) Hz), \(161.89 \) (d, \(J_{C,F} = 258.2 \) Hz), \(134.19 \) (d, \(J_{C,F} = 8.9 \) Hz), \(131.99 \), \(123.81 \) (d, \(J_{C,F} = 3.9 \) Hz), \(119.07 \) (d, \(J_{C,F} = 9.8 \) Hz), \(116.85 \) (d, \(J_{C,F} = 22.3 \) Hz), \(65.39 \), \(28.39 \), \(28.04 \), \(22.59 \), \(13.88 \). HRMS (ESI-TOF) \(m/z \): calcd for \(C_{12}H_{15}FNaO_2^+ \): 233.0948 (M + Na)^+, found: 233.0949.

pentyl 3-fluorobenzoate (3fa)

Colorless oil; \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta = 7.87-7.79 \) (m, 1H), \(7.76-7.67 \) (m, 1H), \(7.45-7.35 \) (m, 1H), \(7.29-7.19 \) (m, 1H), \(4.31 \) (t, \(J = 6.8 \) Hz, 2H), \(1.82-1.70 \) (m, 2H), \(1.48-1.30 \) (m, 4H), \(0.93 \) (t, \(J = 7.2 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, CDCl\(_3\)) \(\delta = 165.46 \) (d, \(J_{C,F} = 3.0 \) Hz), \(162.53 \) (d, \(J_{C,F} = 254.3 \) Hz), \(132.71 \) (d, \(J_{C,F} = 7.4 \) Hz), \(129.90 \) (d, \(J_{C,F} = 7.7 \) Hz), \(125.23 \) (d, \(J_{C,F} = 3.1 \) Hz), \(119.79 \) (d, \(J_{C,F} = 21.2 \) Hz), \(116.39 \) (d, \(J_{C,F} = 22.8 \) Hz), \(65.47 \), \(28.35 \), \(28.14 \), \(22.31 \), \(13.91 \). HRMS (ESI-TOF) \(m/z \): calcd for \(C_{12}H_{15}FNaO_2^+ \): 233.0948 (M + Na)^+, found: 233.0944.

pentyl 4-fluorobenzoate (3ga)

Colorless oil; \(^1H \) NMR (400 MHz, CDCl\(_3\)) \(\delta = 8.11-7.99 \) (m, 2H), \(7.16-7.05 \) (m, 2H), \(4.30 \) (t, \(J = 6.8 \) Hz, 2H), \(1.81-1.70 \) (m, 2H), \(1.47-1.31 \) (m, 4H), \(0.92 \) (t, \(J = 7.2 \) Hz, 3H). \(^{13}C \) NMR (100 MHz, CDCl\(_3\)) \(\delta = 165.67 \), \(165.66 \) (d, \(J_{C,F} = 252.0 \) Hz), \(132.01 \) (d, \(J_{C,F} = 9.2 \) Hz), \(126.77 \) (d, \(J_{C,F} = 3.0 \) Hz), \(115.39 \) (d, \(J_{C,F} = 21.8 \) Hz), \(65.23 \), \(28.39 \), \(28.16 \), \(22.32 \), \(12.93 \). HRMS (ESI-TOF) \(m/z \): calcd for \(C_{12}H_{15}FNaO_2^+ \): 233.0948 (M + Na)^+, found: 233.0942.

pentyl 4-chlorobenzoate (3ha)

129.52, 128.97, 127.81, 64.88, 28.43, 28.18, 22.33, 21.57, 13.93. HRMS (ESI-TOF) \(m/z \): calcd for \(C_{13}H_{18}NaO_2^+ \): 229.1199 (M + Na)^+, found: 229.1199.
Colorless oil; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.97$ (d, $J = 8.8$ Hz, 2H), 7.40 (d, $J = 8.8$ Hz, 2H), 4.30 (t, $J = 6.7$ Hz, 2H), 1.85-1.70 (m, 2H), 1.47-1.32 (m, 4H), 0.92 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 165.76$, 139.20, 130.90, 128.99, 128.63, 65.35, 28.37, 28.15, 22.32, 13.93. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{15}$ClNaO$_2$+: 249.0653 (M + Na)$^+$, found: 249.0629.

pentyl 4-bromobenzoate (3ia)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.92$ (d, $J = 8.4$ Hz, 2H), 7.56 (d, $J = 8.4$ Hz, 2H), 4.30 (t, $J = 6.7$ Hz, 2H), 1.82-1.69 (m, 2H), 1.47-1.29 (m, 4H), 0.92 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 165.84$, 131.60, 131.02, 129.40, 127.82, 65.34, 28.34, 28.12, 22.30, 13.92. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{15}$BrNaO$_2$+: 293.0148 (M + Na)$^+$, found: 293.0153.

pentyl 4-iodobenzoate (3ja)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.78$ (d, $J = 8.6$ Hz, 2H), 7.73 (d, $J = 8.6$ Hz, 2H), 4.30 (t, $J = 6.7$ Hz, 2H), 1.82-1.69 (m, 2H), 1.47-1.28 (m, 4H), 0.92 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 166.09$, 137.64, 130.96, 129.99, 100.47, 65.35, 28.35, 28.13, 22.31, 13.94. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{15}$INaO$_3$+: 341.0009 (M + Na)$^+$, found: 341.0009.

pentyl 4-methoxybenzoate (3ka)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): $\delta = 7.99$ (d, $J = 8.9$ Hz, 2H), 6.90 (d, $J = 8.9$ Hz, 2H), 4.27 (t, $J = 6.7$ Hz, 2H), 3.84 (s, 3H), 1.81-1.67 (m, 2H), 1.49-1.32 (m, 4H), 0.92 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): $\delta = 166.39$, 163.22, 131.48, 123.00, 113.52, 64.77, 55.35, 28.46, 28.20, 22.34, 13.94. HRMS (ESI-TOF) m/z: calcd for C$_{13}$H$_{18}$NaO$_3$+: 245.1148 (M + Na)$^+$, found: 245.1145.

pentyl 4-(trifluoromethyl)benzoate (3la)
Colorless oil; ^1H NMR (400 MHz, CDCl$_3$): $\delta = 8.25$ (d, $J = 8.2$ Hz, 2H), 7.70 (d, $J = 8.2$ Hz, 2H), 4.34 (t, $J = 6.7$ Hz, 2H), 1.81-1.67 (m, 2H), 1.49-1.32 (m, 4H), 0.92 (t, $J = 6.9$ Hz, 3H). ^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 165.44, 134.31$ (q, $J_{\text{C,F}} = 32.4$ Hz), 133.74, 129.92, 125.35 (q, $J_{\text{C,F}} = 3.7$ Hz), 123.65 (q, $J_{\text{C,F}} = 271.0$ Hz), 65.69, 28.33, 28.14, 22.32, 13.93.

pentyl 4-nitrobenzoate (3ma)

Colorless oil; ^1H NMR (400 MHz, CDCl$_3$): $\delta = 8.28$ (d, $J = 8.9$ Hz, 2H), 8.11 (d, $J = 8.9$ Hz, 2H), 4.36 (t, $J = 6.8$ Hz, 2H), 1.85-1.71 (m, 2H), 1.48-1.33 (m, 4H), 0.93 (t, $J = 7.0$ Hz, 3H). ^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 164.69, 150.46, 135.86, 130.60, 123.45, 66.06, 28.27, 28.08, 22.28, 13.89$. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{15}$NNaO$_4$+: 260.0893 (M + Na)$^+$, found: 260.0881.

pentyl 4-acetylbenzoate (3na)

Colorless oil; ^1H NMR (400 MHz, CDCl$_3$): $\delta = 8.12$ (d, $J = 8.4$ Hz, 2H), 8.00 (d, $J = 8.4$ Hz, 2H), 4.34 (t, $J = 6.7$ Hz, 2H), 2.64 (s, 3H), 1.85-1.70 (m, 2H), 1.48-1.33 (m, 4H), 0.93 (t, $J = 7.0$ Hz, 3H). ^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 197.50, 165.77, 140.15, 134.30, 129.75, 128.15, 65.60, 28.35, 28.15, 26.83, 22.32, 13.94$. HRMS (ESI-TOF) m/z: calcd for C$_{14}$H$_{18}$NaO$_3^+$: 257.1148 (M + Na)$^+$, found: 257.1148.

pentyl 4-hydroxybenzoate (3oa)

Colorless oil; ^1H NMR (400 MHz, CDCl$_3$): $\delta = 7.95$ (d, $J = 8.8$ Hz, 2H), 7.89 (d, $J = 8.8$ Hz, 2H), 6.74 (br, 1H), 4.29 (t, $J = 6.6$ Hz, 2H), 1.81-1.69 (m, 2H), 1.47-1.29 (m, 4H), 0.92 (t, $J = 7.0$ Hz, 3H). ^{13}C NMR (100 MHz, CDCl$_3$): $\delta = 167.09, 160.32, 131.88, 122.56, 115.25, 65.14, 28.42, 28.18, 22.33, 13.94$. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{16}$NaO$_3^+$: 231.0992 (M + Na)$^+$, found: 231.0986.
pentyl [1,1'-biphenyl]-2-carboxylate (3pa)

![Chemical structure of pentyl [1,1'-biphenyl]-2-carboxylate](image)

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.87-7.79\) (m, 1H), 7.67-7.50 (m, 1H), 7.47-7.28 (m, 7H), 4.03 (t, \(J = 6.8\) Hz, 2H), 1.42-1.29 (m, 2H), 1.26-1.16 (m, 2H), 1.10-0.99 (m, 2H), 0.84 (t, \(J = 7.2\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 169.00, 142.31, 141.54, 131.43, 131.00, 130.62, 129.70, 128.35, 128.00, 127.14, 127.10, 65.18, 27.91, 27.86, 22.24, 13.85.\)

HRMS (ESI-TOF) \(m/z\): calcd for C\(_{18}\)H\(_{20}\)NaO\(_2^+\): 291.1356 (M + Na), found: 291.1367.

pentyl 3,5-dimethylbenzoate (3qa)

![Chemical structure of pentyl 3,5-dimethylbenzoate](image)

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.66\) (s, 2H), 7.18 (s, 1H), 4.30 (t, \(J = 6.7\) Hz, 2H), 2.36 (s, 6H), 1.83-1.70 (m, 2H), 1.47-1.34 (m, 4H), 0.94 (t, \(J = 7.0\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 166.98, 137.90, 134.38, 130.40, 127.20, 64.96, 28.43, 28.16, 22.33, 21.11, 13.93.\)

HRMS (ESI-TOF) \(m/z\): calcd for C\(_{14}\)H\(_{20}\)NaO\(_2^+\): 243.1356 (M + Na), found: 243.1351.

pentyl 2-naphthoate (3ra)

![Chemical structure of pentyl 2-naphthoate](image)

Colorless oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.62\) (s, 1H), 8.13-8.02 (m, 1H), 7.96 (d, \(J = 7.6\) Hz, 1H), 7.88 (d, \(J = 8.4\) Hz, 2H), 7.63-7.48 (m, 2H), 4.39 (t, \(J = 6.8\) Hz, 2H), 1.89-1.77 (m, 2H), 1.54-1.36 (m, 4H), 0.96 (t, \(J = 7.0\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 166.78, 135.44, 132.48, 130.88, 129.29, 128.08, 128.03, 127.76, 127.70, 126.52, 125.22, 65.24, 28.46, 28.20, 22.36, 13.96.\)

HRMS (ESI-TOF) \(m/z\): calcd for C\(_{16}\)H\(_{18}\)NaO\(_2^+\): 265.1199 (M + Na), found: 265.1197.

pentyl 3,5-dinitrobenzoate (3sa)

![Chemical structure of pentyl 3,5-dinitrobenzoate](image)
Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ = 9.26-9.20 (m, 1H), 9.18-9.11 (m, 2H), 4.30 (t, $J = 6.8$ Hz, 2H), 1.90-1.77 (m, 2H), 1.50-1.34 (m, 4H), 0.94 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ = 162.53, 148.66, 134.16, 129.37, 122.25, 67.11, 28.22, 27.99, 22.27, 13.89.

penty 1-methyl-4-nitrobenzoate(3ta)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ = 8.01 (s, 1H), 7.97 (s, 2H), 4.34 (t, $J = 6.8$ Hz, 2H), 2.62 (s, 3H), 1.85-1.72 (m, 2H), 1.49-1.30 (m, 4H), 0.93 (t, $J = 7.0$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ = 164.88, 151.79, 134.11, 133.89, 133.38, 127.97, 124.50, 65.94, 28.30, 28.10, 22.30, 20.03, 13.92. HRMS (ESI-TOF) m/z: calcd for C$_{13}$H$_{17}$NNaO$_4$$: 274.1050 (M + Na)$^+$, found: 274.1027.

pentyl 2-chloro-4-nitrobenzoate(3ua)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ = 8.31 (d, $J = 2.4$ Hz, 1H), 8.18-8.11 (m, 2H), 7.94 (d, $J = 8.4$ Hz, 1H), 4.38 (t, $J = 6.8$ Hz, 2H), 1.85-1.73 (m, 2H), 1.49-1.31 (m, 4H), 0.92 (t, $J = 7.2$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ = 164.34, 149.34, 136.28, 134.64, 131.89, 125.94, 121.40, 66.60, 28.17, 28.05, 22.24, 13.90. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{14}$ClNNaO$_4$$: 294.0504 (M + Na)$^+$, found: 294.0508.

pentyl cyclohexanecarboxylate(3va)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ = 4.00 (t, $J = 6.7$ Hz, 2H), 2.30-2.17 (m, 1H), 1.91-1.09 (m, 16H), 0.86 (t, $J = 6.7$ Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ = 176.02, 64.09, 43.17, 28.95, 28.28, 28.00, 25.70, 25.37, 22.22, 13.83. HRMS (ESI-TOF) m/z: calcd for C$_{12}$H$_{22}$NaO$_2$$: 221.1512 (M + Na)$^+$, found: 221.1511.

pentyl octanoate(3wa)

Colorless oil; 1H NMR (400 MHz, CDCl$_3$): δ = 4.00 (t, $J = 6.8$ Hz, 2H), 2.23 (t, $J = 7.6$ Hz, 2H), 1.67-1.47 (m, 4H), 1.36-1.14 (m, 12H), 0.95-0.71 (m, 6H). 13C NMR (100 MHz, CDCl$_3$): δ = 173.75, 64.20, 34.26, 31.58, 29.02, 28.84, 28.28, 28.01, 24.92,
22.49, 22.22, 13.90, 13.80. HRMS (ESI-TOF) m/z: calcd for C_{13}H_{26}NaO_{2}+: 237.1825 (M + Na)^+, found: 237.1823.

pental 2-phenylacetate(3xa)

![Chemical Structure](attachment:image.png)

Colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.40-7.24\) (m, 5H), 4.11 (t, \(J = 6.8\) Hz, 2H), 3.64 (s, 2H), 1.72-1.57 (m, 2H), 1.45-1.25 (m, 4H), 0.91 (t, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 171.65, 134.18, 128.21, 128.49, 126.98, 64.99, 41.47, 28.23, 27.97, 22.24, 13.91\). HRMS (ESI-TOF) m/z: calcd for C\(_{13}\)H\(_{18}\)NaO\(_2\)^+: 229.1199 (M + Na)^+, found: 229.1194.

pental 3-phenylpropanoate(3ya)

![Chemical Structure](attachment:image.png)

Colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.38-7.17\) (m, 5H), 4.09 (t, \(J = 6.8\) Hz, 2H), 2.98 (t, \(J = 7.7\) Hz, 2H), 2.65 (t, \(J = 7.7\) Hz, 2H), 1.70-1.57 (m, 2H), 1.41-1.25 (m, 4H), 0.92 (t, \(J = 6.8\) Hz, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 172.99, 140.56, 128.44, 128.26, 126.20, 64.62, 35.92, 30.99, 28.29, 28.02, 22.29, 13.93\). HRMS (ESI-TOF) m/z: calcd for C\(_{14}\)H\(_{20}\)NaO\(_2\)^+: 243.1356 (M + Na)^+, found: 243.1355.

pental cinnamate(3za)

![Chemical Structure](attachment:image.png)

Colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.69\) (d, \(J = 16.0\) Hz, 1H), 7.58-7.47 (m, 2H), 7.44-7.36 (m, 3H), 6.45 (d, \(J = 16.0\) Hz, 1H), 4.20 (t, \(J = 6.8\) Hz, 2H), 1.78-1.67 (m, 2H), 1.45-1.32 (m, 4H), 0.99-0.86 (m, 3H). \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta = 172.99, 140.56, 128.44, 128.26, 126.20, 64.62, 35.92, 30.99, 28.29, 28.02, 22.29, 13.93\). HRMS (ESI-TOF) m/z: calcd for C\(_{14}\)H\(_{18}\)NaO\(_2\)^+: 241.1199 (M + Na)^+, found: 241.1200.

propyl benzoate(3ab)

![Chemical Structure](attachment:image.png)

Colorless oil; \(^1^H\) NMR (400 MHz, CDCl\(_3\)): \(\delta = 8.05\) (d, \(J = 7.6k\) Hz, 2H), 7.60-7.48 (m, 1H), 7.48-7.33 (m, 2H), 4.28 (t, \(J = 6.6\) Hz, 2H), 1.89-1.67 (m, 2H), 1.03 (t, \(J = 7.2\) Hz, 3H).
7.4 Hz, 3H). 13C NMR (100 MHz, CDCl$_3$): δ = 166.51, 132.65, 130.44, 129.40, 128.18, 66.38, 22.02, 10.39. HRMS (ESI-TOF) m/z: calcd for C$_{10}$H$_{12}$NaO$_2^+$: 187.0730 (M + Na)$^+$, found: 187.0732.

isopropyl benzoate(3ac)

\[
\begin{align*}
\text{Colorless oil; } &^1\text{H NMR (400 MHz, CDCl$_3$): } \delta = 8.09-7.97 \text{ (m, 2H), 7.59-7.50} \text{ (m, 1H),} \\
&7.48-7.37 \text{ (m, 2H), 5.31-5.19} \text{ (m, 1H), 1.37} \text{ (d, } J = 6.4 \text{ Hz, 6H). } ^{13}\text{C NMR (100 MHz, CDCl$_3$): } \delta = 166.07, 132.64, 130.90, 129.46, 128.21, 68.29, 21.92. \text{ HRMS (ESI-TOF) } m/z: \text{ calcd for C$_{10}$H$_{12}$NaO$_2^+$: 187.0730 (M + Na)$^+$, found: 187.0730.}
\end{align*}
\]

cyclohexyl benzoate(3ad)

\[
\begin{align*}
\text{Colorless oil; } &^1\text{H NMR (400 MHz, CDCl$_3$): } \delta = 8.09-80.2 \text{ (m, 2H), 7.59-7.51} \text{ (d, } J = 7.4 \text{ Hz, 1H), 7.47-7.40} \text{ (m, 2H), 5.10-4.96} \text{ (m, 1H), 2.02-1.89} \text{ (m, 2H), 1.95-1.71} \text{ (m, 2H), 1.59-1.30} \text{ (m, 6H). } ^{13}\text{C NMR (100 MHz, CDCl$_3$): } \delta = 165.98, 132.64, 131.01, 129.51, 128.24, 73.01, 31.64, 25.48, 23.65. \text{ HRMS (ESI-TOF) } m/z: \text{ calcd for C$_{13}$H$_{16}$NaO$_2^+$: 227.1043 (M + Na)$^+$, found: 227.1042.}
\end{align*}
\]
IV. NMR spectra

Compound 3aa

1H NMR

1H NMR spectrum of Compound 3aa showing the proton resonances.

13C NMR

13C NMR spectrum of Compound 3aa showing the carbon resonances.
Compound 3ba

1H NMR

13C NMR
Compound 3ca

1H NMR

$^1^3$C NMR
Compound 3da

1H NMR

1C NMR
Compound 3ea

1H NMR

![1H NMR spectrum of Compound 3ea](image)

13C NMR

![13C NMR spectrum of Compound 3ea](image)
Compound 3fa

1H NMR

13C NMR
Compound 3ga

1H NMR

13C NMR
Compound 3ha

1H NMR

1C NMR
Compound 3ia

1H NMR

1C NMR
Compound 3ja

1H NMR

13C NMR
Compound 3ka

1H NMR

$^1^3$C NMR
Compound 3ma

1H NMR

1C NMR
Compound 3na

1H NMR

1C NMR
Compound 30a

1H NMR

13C NMR
Compound 3pa

1H NMR

13C NMR
Compound 3qa

1H NMR

1C NMR

13C NMR
Compound 3ra

1H NMR

13C NMR
Compound 3sa

1H NMR

![Chemical structure](image1)

13C NMR

![Chemical structure](image2)
Compound 3ta

1H NMR

13C NMR
Compound 3ua

1H NMR

13C NMR
Compound 3va

1H NMR

13C NMR
Compound 3wa

1H NMR

13C NMR
Compound 3xa

1H NMR

13C NMR
Compound 3ya

1H NMR

1C NMR

1H NMR

1C NMR
Compound 3za

1H NMR

1C NMR
Compound 3ab

1H NMR

13C NMR
Compound 3ac

\(^1\text{H NMR}\)

\(^{13}\text{C NMR}\)
Compound 3ad

1H NMR

13C NMR