Electronic supplementary information

Water-promoted ortho-selective monohydroxymethylation of phenols in NaBO$_2$ system

Hui-Jing Li,*a,b Ying-Ying Wu,a Qin-Xi Wu,a Rui Wang,a Chun-Yang Dai,a Zhi-Lun Shen,a Cheng-Long Xiea and Yan-Chao Wu*a

a School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, China
b Beijing National Laboratory for Molecular Sciences (BNLMS), and Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China

*E-mails: lihuijing@iccas.ac.cn, ycwu@iccas.ac.cn

1. Table of Contents

1. Table of Contents ... S1
2. General Information ... S2
3. NMR spectra .. S3
3a. NMR spectra of salicyl alcohol 2a–t .. S3
3b. NMR spectra of bis-hydroxymethyled product 3a S45
3c. NMR spectra of bis-hydroxymethyled product 3i S47
3d. NMR spectra of para-hydroxymethyled product 4d S49
2. General Information

Common reagents and materials were purchased from commercial sources and purified by recrystallization or distillation. Where necessary, organic solvents were routinely dried and/or distilled prior to use and stored over molecular sieves under argon. Organic extracts were, in general, dried over anhydrous sodium sulfate (Na₂SO₄). TLC plates were visualized by exposure to ultraviolet light (UV). Chemical shifts for protons are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to residual protium in the NMR solvents (CHCl₃: δ 7.26; DMSO-d₆: δ 2.50). Chemical shifts for carbon resonances are reported in parts per million (δ scale) downfield from tetramethylsilane and are referenced to the carbon resonances of the solvent (CDCl₃: δ 77.0; DMSO-d₆: δ 39.43). Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad), integration, and coupling constant in Hz. Coupling constants (J) are reported in Hertz (Hz).
3. NMR Spectra

3a. NMR spectra of salicyl alcohol 2a–t

Salicyl alcohol 2a

1H NMR (400 MHz, CDCl$_3$)
Salicyl alcohol 2a

13C NMR (100 MHz, CDCl$_3$)
Salicyl alcohol 2b

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2b

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2c

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2e

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2d

1H NMR (300 MHz, CDCl$_3$)
Salicyl alcohol 2d

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 2e

1H NMR (300 MHz, CDCl$_3$)
Salicyl alcohol 2e

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 2f

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2f

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 2g

1H NMR (300 MHz, CDCl$_3$)
Salicyl alcohol 2g

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 2h

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2h

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2i

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2i

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2j

1H NMR (300 MHz, CDCl$_3$)
Salicyl alcohol 2j

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 2k

1H NMR (300 MHz, CDCl$_3$)
Salicyl alcohol 2k

13C NMR (75 MHz, CDCl$_3$)
Salicyl alcohol 21

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2m

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2m

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2n

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2n

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 20

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2o

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2p

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2p

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2q

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2q

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2q

HSQC (100 MHz, DMSO-d_6)
Salicyl alcohol 2q

HMBC (100 MHz, DMSO-d_6)
Salicyl alcohol 2r

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2r

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2s

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2s

13C NMR (100 MHz, DMSO-d_6)
Salicyl alcohol 2s

HSQC (100 MHz, DMSO-d_6)
Salicyl alcohol 2t

1H NMR (400 MHz, DMSO-d_6)
Salicyl alcohol 2t

13C NMR (100 MHz, DMSO-d_6)
3b. NMR spectra of bishydroxymethyled product 3a

1H NMR (300 MHz, CDCl$_3$)
Bishydroxymethyled product 3a

13C NMR (75 MHz, CDCl$_3$)
3c. NMR spectra of bishydroxymethyelled product 3i

1H NMR (400 MHz, DMSO-d_6)
Bishydroxymethyled product 3i

13C NMR (100 MHz, DMSO-d_6)
3d. NMR spectra of *para*-hydroxymethylated product 4d

1H NMR (400 MHz, DMSO-d_6)
para-Hydroxymethyled product 4d

13C NMR (100 MHz, DMSO-d_6)