Electronic Supplementary Information for

Complexity Generation by Chemical Synthesis: Five-Step Synthesis of (−)-Chaetominine from L-Tryptophan and its Biosynthetic Implications

Chu-Pei Xu, Shi-Peng Luo, Ai-E Wang, and Pei-Qiang Huang*

Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. China

Contents

Experimental S1–S5
References S5
1H and 13C NMR Spectra of Compounds S6–S10
Experimental

General Methods. Melting points were uncorrected. Infrared spectra were measured using film KBr pellet techniques. 1H NMR spectra were recorded in CDCl$_3$ or DMSO-d_6 with tetramethylsilane as an internal standard. Chemical shifts are expressed in δ (ppm) units downfield from TMS. Silica gel (300-400 mesh) was used for flash column chromatography, eluting (unless otherwise stated) with ethyl acetate/petroleum ether (PE) (60-90°C) mixture. DMSO was pre-dried over calcium hydride. Ether and THF were distilled over sodium benzophenone ketyl under N$_2$. Dichloromethane was distilled over calcium hydride under N$_2$.

(S)-3-(1H-Indol-3-yl)-2-(2-nitrobenzamido)propanoic acid (9).

A mixture of 2-nitrobenzoic acid (6.14 g, 36.7 mmol) in thionyl chloride (8 mL, 110.1 mmol) was refluxed for 3 h. The excess thionyl chloride was removed under reduced pressure. The residue was dissolved in anhydrous THF (30 mL) and the solution was added dropwise to an ice-cooled solution of L-tryptophan (5.00 g, 24.5 mmol) in 73 mL of 1 N NaOH with vigorous stirring. After being stirred for 2 h, the reaction mixture was acidified with 1 N HCl until pH 3, and then extracted with EtOAc (3 × 50 mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The residue was crystallized from EtOAc to give compound 9 (7.87 g, yield: 91%) as a yellow solid. Mp 204-206 °C (EtOAc); $[\alpha]_D^{20}$ +7.6 (c 1.0, CH$_3$OH); IR (film) ν max: 3469, 3407, 1719, 1626, 1608, 1525, 1218, 741 cm$^{-1}$; 1H NMR (400 MHz, DMSO-d_6) δ 12.90 (br s, 1H), 10.91 (s, 1H), 9.20 (d, J = 7.9 Hz, 1H), 8.20 (d, J = 7.9 Hz, 1H), 7.74 (t, J = 7.3 Hz, 1H), 7.70-7.62 (m, 2H), 7.54 (d, J = 7.3 Hz, 1H), 7.43 (d, J = 8.0 Hz, 1H), 7.31 (d, J = 1.2 Hz, 1H), 7.15 (t, J = 7.3 Hz, 1H), 7.07 (t, J = 7.3 Hz, 1H), 4.80 (ddd, J = 8.6, 7.9, 5.1 Hz, 1H), 3.39 (dd, J = 14.8, 5.1 Hz, 1H), 3.23 (dd, J = 14.8, 8.6 Hz, 1H); 13C NMR (100 MHz, DMSO-d_6) δ 173.3, 165.7, 147.4, 136.4, 133.6, 132.2, 131.0, 129.4, 127.5, 124.2, 123.8, 121.3, 118.7, 118.4, 111.7, 110.2, 53.7, 27.2; MS (ESI) m/z 376 (M+Na$^+$, 100%); HRMS-ESI Calcd for C$_{18}$H$_{13}$N$_3$O$_5$: 376.0909; found: 376.0906.

Methyl (S)-{2-[(S)-3-(1H-indol-3-yl)-2-(2-nitrobenzamido)propanamido]propanoate} (10).

81
To a stirring solution of 9 (1.8 g, 5.09 mmol) in THF (20 mL) at −30 °C were added successively N-methylmorpholine (0.84 mL, 7.63 mmol) and iBuOCOC1 (0.74 mL, 5.60 mmol). After being stirred at −30 °C under N₂ for 60 min, the suspension was added slowly to a solution of l-alanine methyl ester hydrochloride (1.42 g, 10.18 mmol) and N-methylmorpholine (1.68 mL, 15.28 mmol) in THF (36 mL) at −78 °C, and the resulting mixture was stirred for 12 h at −20 °C. The reaction was quenched with H₂O (5 mL) and brine (5 mL), and the resulting mixture was stirred for 15 min. The aqueous phase was extracted with EtOAc (3 × 40 mL). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc: PE = 1:2 to EtOAc: DCM = 1:4) to give compound 10 (2.07 g, 93%) as a yellow solid.

Mp 75-77 °C (EtOAc); [α]D²⁰ +22.7 (c 1.0, CHCl₃); IR (film) νmax: 3290, 1739, 1644, 1530, 1456, 1348, 1210, 746 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.50-8.44 (m, 1H), 7.98-7.93 (m, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.54-7.44 (m, 2H), 7.34-7.29 (m, 1H), 7.24-7.19 (m, 1H), 7.17-7.02 (m, 3H), 6.96 (dd, J = 7.6, 3.6 Hz, 1H), 6.62 (dd, J = 6.8, 3.6 Hz, 1H), 4.95 (ddd, J = 7.6, 6.4 Hz, 1H), 4.38 (dq, J = 6.8, 7.2 Hz, 1H), 3.64 (s, 3H), 3.43 (dd, J = 14.8, 6.4 Hz, 1H), 3.26 (dd, J = 14.8, 7.3 Hz, 1H), 1.29 (d, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 170.4, 166.3, 146.3, 136.1, 133.6, 132.2, 130.5, 128.6, 127.5, 124.4, 123.5, 122.0, 119.6, 118.6, 111.3, 110.1, 54.2, 52.4, 48.4, 27.6, 17.9; MS (ESI) m/z 461 (M+Na⁺, 100%); HRMS-ESI Calcd for C₂₂H₂₂N₄O₆: (M+Na)+ 461.1437; found: 461.1427.

Methyl (S)-(2-[(S)-3-(1H-indol-3-yl)-2-(4-oxoquinazolin-3(4H)-yl)propanamido]propanoate | propanoate (11).

To a mixture of Zinc powder (388 mg, 5.97 mmol) and THF (30 mL) was added TiCl₄ (0.33 mL, 2.99 mmol) at 0 °C, and the reaction mixture were stirred for 1 h at 50 °C. To the resulting mixture, a THF (5 mL) solution of compound 10 (327 mg, 0.75 mmol) and triethyl orthoformate (0.33 mL, 2.99 mmol) were added. The resulting mixture was stirred for one day at 0 °C. To the reaction mixture were added brine (5 mL) and stirred for 2 h. After separating the phases, the aqueous phase was extracted with EtOAc (3 × 15
The combined organic phases were dried over anhydrous Na$_2$SO$_4$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent: EtOAc: PE = 1:3 to DCM: MeOH = 40:1) to give compound 11 (298 mg, yield: 95%) as a yellow solid. Mp 203-205 °C (EtOAc); $[\alpha]_D^{20}$ +25.5 (c 1.0, THF); IR (film) ν_{max}: 3310, 1744, 1659, 1609, 1457, 1210, 1152, 743 cm$^{-1}$; 1H NMR (500 MHz, acetone-d_6) δ 10.0 (s, 1H), 8.42 (s, 1H), 8.15-8.09 (m, 2H), 7.77-7.68 (m, 1H), 7.60-7.57 (m, 1H), 7.48-7.43 (m, 1H), 7.32-7.29 (m, 1H), 7.19 (d, $J = 2.3$ Hz, 1H), 7.07-7.03 (m, 1H), 7.00-6.96 (m, 1H), 6.02 (dd, $J = 10.3$, 6.0 Hz, 1H), 4.51 (dq, $J = 7.3$, 7.3 Hz, 1H), 3.76 (ddd, $J = 15.4$, 6.0, 0.8 Hz, 1H), 3.70 (s, 3H), 3.63 (dd, $J = 15.4$, 10.3 Hz, 1H), 1.37 (d, $J = 7.3$ Hz, 3H); 13C NMR (125 MHz, acetone-d_6) δ 173.5, 170.1, 161.3, 148.8, 146.8, 137.6, 134.9, 128.2, 127.5, 127.3, 124.7, 122.6, 122.3, 119.7, 119.3, 112.2, 112.2, 110.2, 57.0, 52.4, 49.3, 27.9, 17.5; MS (ESI) m/z 419 (M+H$^+$, 100%), HRMS-ESI Calcd for C$_{23}$H$_{22}$N$_4$O$_4$: (M+H)$^+$ 419.1719; found: 419.1707.

(+)-2,3,14-Triepi-chaetominine (6) and Methyl (αS,3R,4aS,9aR)-2,3,4,4a,9,9a-Hexahydro-4a-hydroxy-α-methyl-2-oxo-3-[4-oxo-3(4H)-quinazolinyl]-1H-pyrido[2,3]indole-1-ethanoate (12).

![Chemical structure]

To a solution of 11 (200 mg, 0.48 mmol) in anhydrous acetone (2 mL) was added a solution of 0.05 M DMDO in acetone (19.2 mL, 0.96 mmol) at -78 °C. After being stirred for 1 h, Na$_2$SO$_3$ (sat.) (10 mL) was added and the mixture stirred for 1.5 h at 0 °C. The solvent was evaporated under reduced pressure. To the residue was added a saturated NH$_4$Cl (10 mL) and the mixture extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (5 mL), dried over anhydrous Na$_2$SO$_4$, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (eluent: EtOAc: PE = 3:2) to give (+)-2,3,14-triepi-chaetominine (8) (62 mg, yield: 32%) and compound 12 (100 mg, 48%).

The physical and spectral data of (+)-2,3,14-triepi-chaetominine (8) are in agreement with those we obtained previously.

Compound 12: white solid, Mp 146-148 °C (EtOAc); $[\alpha]_D^{20}$ +111.2 (c 1.0, THF); IR (film) ν_{max}: 3337, 2944, 1741, 1676, 1611, 1475, 1243, 776 cm$^{-1}$; 1H NMR (400 MHz, CDCl$_3$) δ 8.16 (dd, $J = 8.0$, 1.2 Hz, 1H), 7.73-7.59 (m, 3H), 7.46-7.40 (m, 1H), 7.31 (d, $J = 7.3$ Hz, 1H), 7.17-7.12 (m, 1H), 6.87-6.81 (m, 1H), 6.64 (d, $J = 7.3$ Hz, 1H), 5.27 (br s, 1H), 5.21 (d, $J = 4.0$ Hz, 1H), 5.03 (q, $J = 7.4$ Hz, 1H), 4.72 (d, $J = 4.0$ Hz, 1H), 4.43 (s, 1H), 3.76 (s, 3H), 3.01-2.85 (m, 1H), 2.93 (dd, $J = 12.1$, 3.8 Hz, 1H), 1.49 (d, $J =$...
To a mixture of compound 12 (40 mg, 0.09 mmol) and DMAP (1.2 mg, 0.009 mmol) was added toluene (3 mL) under Ar. Then the mixture was stirred under reflux for 7 days. The solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel (EtOAc/ hexane = 3: 2 to 2: 1) to give (−)-chaetominine (1) (22.2 mg, yield: 60%) and (−)-11-epi-chaetominine (ent-8) (7.0 mg, yield: 19%).

(−)-Chaetominine (1): white solid, Mp 165-167 °C (after chromatography); Mp 196-198 °C (after recrystallization from EtOAc/ hexane); [α] D 20 −48.6 (c 0.21, MeOH). The spectral data are in agreement with those obtained previously 1.

(−)-11-epi-chaetominine (ent-8): white solid, Mp. 205-208 °C (EtOAc); [α] D 20 −98.0 (c 0.50, CH3OH); IR (film) νmax: 3436, 1674, 1610, 1478, 1325, 1292, 1080, 773 cm−1; 1H NMR (400 MHz, DMSO-d6) δ 8.23 (s, 1H), 8.21 (dd, J = 8.0, 1.0 Hz, 1H), 7.86 (td, J = 7.5, 1.0 Hz, 1H), 7.69 (d, J = 8.0 Hz, 1H), 7.58 (td, J = 7.5, 1.0 Hz, 1H), 7.50-7.45 (m, 2H), 7.41 (td, J = 7.5, 1.0 Hz, 1H), 7.24 (td, J = 7.5, 1.0 Hz, 1H), 6.76 (s, 1H), 5.98-5.88 (m, 1H), 5.85 (s, 1H), 4.65 (q, J = 7.3 Hz, 1H), 2.93 (dd, J = 13.0, 13.0 Hz, 1H), 2.51 (dd, J = 13.0, 3.4 Hz, 1H), 1.49 (d, J = 7.3 Hz, 3H); 13C NMR (100 MHz, DMSO-d6) δ 170.8, 166.2, 159.9, 147.3, 146.6, 137.7, 137.5, 134.6, 129.7, 127.2, 126.4, 125.4, 124.6, 121.0, 114.5, 82.9, 76.6, 59.6, 49.3, 38.3, 15.0; MS (ESI) m/z 425 (M+Na+, 100%); HRMS-ESI Calcd for C22H18N4O4: 403.1406; found: 403.1403.

(2R,2a1S,4R,5aS)-5a-Hydroxy-2-methyl-4-(4-oxoquinazolin-3(4H)-yl)-2a1,4,5,5a-tetrahydro-1H-2a,9b-diazacyclopenta[jk]fluorene-1,3(2H)-dione (ent-8)
To a solution of compound 12 (43 mg, 0.1 mmol) in MeOH (1.5 mL) was added a solution of freshly prepared CH3ONa (27 mg, 0.5 mmol) in CH3OH (3.5 mL) at −10 °C. After stirring for 48 h, the reaction mixture was acidified with 10% HCOOH to reach pH = 7. The solvent was evaporated under reduced pressure, and the residue was extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (2 mL), dried over anhydrous Na2SO4, filtered and concentrated in vacuo. The residue was purified by flash chromatography on silica gel (eluent: EtOAc:PE = 3:2) to give ent-8 (34 mg, 82%) as colorless crystals.

References

1H and 13C NMR Spectra of compound (S)-9

XFE101-H1
DMSO-d6
2012.6.28

400 MHz

XFE101-C10
DMSO-d6
2012.5.20

400 MHz
1H and 13C NMR Spectra of compound 10
1H and 13C NMR Spectra of compound 11

400 MHz
1H and 13C NMR Spectra of compound 12
1H and 13C NMR Spectra of compound ent-8