Supplementary Information

Nanomolar fluorogenic detection of Al(III) by a series of Schiff bases in aqueous system and their application in cell imaging.

Sanyog Sharmaa, Maninder Singh Hundala*, Amandeep Waliab, Vanita Vanitab and and Geeta Hundala*

aDepartment of Chemistry, UGC Center for Advance Studies and bDepartment of Human Genetics, Guru Nanak Dev University, Amritsar 143005, Punjab, India.

Table of Contents

1. Synthetic Procedures and Characterization..S5
2. Showing the H-bonding interactions in DBIH1 resulting in the formation of undulating tapes of molecules (a) down a axis (b) down the b axis. (Fig. S1).....S6
3. The H-bonded 3D, double helical tapes in the crystal structure of DBIH1, shown down the b axis. (Fig. S2)...S6
4. 1H NMR of DBIH1. (Fig. S3)..S7
5. 13C NMR of DBIH1. (Fig. S4)...S7
6. IR of DBIH1. (Fig. S5) ...S8
7. ESI-MS of DBIH1. (Fig. S6) ...S8
8. 1H NMR of DBIH2. (Fig. S7)..S9
9. 13C NMR of DBIH2. (Fig. S8)..S9
10. IR of DBIH2. (Fig. S9) ...S10
11. ESI-MS of DBIH2. (Fig. S10) ..S10
12. 1H NMR of DBIH3. (Fig. S11)..S11
13. \(^{13}\)C NMR of DBIH3. (Fig. S12) ... S11

14. IR of DBIH3. (Fig. S13) ... S12

15. ESI-MS of DBIH3. (Fig. S14) ... S12

16. Changes in UV-vis spectrum of DBIH1 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH1. (Fig. S15) S13

17. Changes in UV-vis spectrum of DBIH2 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH2. (Fig. S16) S13

18. Changes in UV-vis spectrum of DBIH3 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH3. (Fig. S17) S14

19. Benesi-Hildebrand plot for stability constant of DBIH1 with Al(III) from absorbance data. (Fig. S18) ... S14

20. Benesi-Hildebrand plot for stability constant of DBIH2 with Al(III) from absorbance data. (Fig. S19) ... S15

21. Benesi-Hildebrand plot for stability constant of DBIH3 with Al(III) from absorbance data. (Fig. S20) ... S15

22. Showing Job’s plot for stoichiometry of complex of DBIH1 with Al(III). (Fig. S21) ... S16

23. Showing Job’s plot for stoichiometry of complex of DBIH2 with Al(III). (Fig. S22) ... S16

24. Showing Job’s plot for stoichiometry of complex of DBIH3 with Al(III). (Fig. S23) ... S17

25. Changes in fluorescence spectra of DBIH1 upon gradual addition of Al(III). (Fig. S24) ... S17
26. (a) Benesi-Hildebrand plot for stability constant of DBIH1 with Al(III). (b) Fluorescence intensity of DBIH1 for different concentrations of Al (III), normalized between the maximum emission and the minimum emission (0.0 µM Al (III)) intensity. (Fig. S25) ..S18

27. Changes in fluorescence spectra of DBIH2 upon gradual addition of Al(III). (Fig. S26) ..S18

28. (a) Benesi-Hildebrand plot for stability constant of DBIH2 with Al(III). (b) Fluorescence intensity of DBIH2 for different concentrations of Al(III), normalized between the maximum emission and the minimum emission (0.0 µM Al(III)) intensity. (Fig. S27) ...S19

29. Changes in fluorescence spectra of DBIH3 upon gradual addition of Al(III). (Fig. S28) ..S19

30. (a) Benesi-Hildebrand plot for stability constant of DBIH3 with Al(III). (b) Fluorescence intensity of DBIH3 for different concentrations of Al(III), normalized between the maximum emission and the minimum emission (0.0 µM Al(III)) intensity. (Fig. S29) ...S20

31. Calculation of change in free energies of the Al(III) complexes of DBIH1-DBIH3..S20

32. The fluorescence responses of DBIH1 (2.5 µM) towards different Al(III) salts (10 equiv.). (Fig. S30) ...S21

33. Competitive Selectivity of DBIH1 towards Al(III) in the presence of other metal ions under study. (Fig. S31) ...S21

34. The fluorescence responses of DBIH2 (2.5 µM) towards different Al(III) salts (10 equiv.). (Fig. S32) ...S22

35. Competitive Selectivity of DBIH2 towards Al(III) in the presence of other metal ions under study. (Fig. S33) ...S22
36. The fluorescence responses of DBIH3 (2.5 μM) towards different Al(III) salts (10 equiv.). (Fig. S34) ...S23

37. Competitive Selectivity of DBIH3 towards Al(III) in the presence of other metal ions under study. (Fig. S35) ...S23

38. (a) ¹H NMR (b) IR of DBIH1-Al(III). (Fig. S36) ...S24

39. ESI-MS of DBIH1-Al(III) (Fig. S37) ...S24

40. (a) ¹H NMR (b) IR of DBIH2-Al(III). (Fig. S38) ...S25

41. ESI-MS of DBIH2-Al(III) (Fig. S39) ...S25

42. (a) ¹H NMR (b) IR of DBIH3-Al(III) (Fig. S40) ...S26

43. ESI-MS of DBIH3-Al(III) (Fig. S41) ...S26

44. Cell viability values (%) estimated by an MTT proliferation test with HeLa and C6 glioma cells at 37°C. Blue bars represent the results with HeLa Cells and red bars represent the results with C6 cells. (Fig. S42) ...S27

45. Crystal data and structure refinement for DBIH1. ...S28

46. Showing important hydrogen bonds in DBIH1. ...S29
Synthetic Procedures and Characterization.

Scheme S1. Synthesis of Sensors
Fig. S1. Showing the H-bonding interactions in DBIH1 resulting in the formation of undulating tapes of molecules (a) down a axis (b) down the b axis.

Fig. S2. The H-bonded 3D, double helical tapes in the crystal structure of DBIH1, shown down the b axis.
Fig. S3. 1H NMR of DBIH1.

Fig. S4. 13C NMR of DBIH1.
Fig. S5. IR of DBIH1.

Fig. S6. ESI-MS of DBIH1.
Fig. S7. 1H NMR of DBIH2.

Fig. S8. 13C NMR of DBIH2.
Fig. S9. IR of DBIH2.

\[\text{C}_{22}\text{H}_{18}\text{N}_4\text{O}_6+1(M+1)^+ \]

Fig. S10. ESI-MS of DBIH2.
Fig. S11. 1H NMR of DBIH3.

Fig. S12. 13C NMR of DBIH3.
Fig. S13. IR of DBIH3.

Fig. S14. ESI-MS of DBIH3.
Fig. S15. Changes in UV-vis spectrum of DBIH1 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH1.

Fig. S16. Changes in UV-vis spectrum of DBIH2 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH2.
Fig. S17. Changes in UV-vis spectrum of DBIH3 (10 μM) on the addition of different metal ions (100 μM) in HEPES buffer (pH 7.4, containing 30% DMSO as a co-solvent). Inset: Response of Al(III) towards DBIH3.

Fig. S18. Benesi-Hildebrand plot for stability constant of DBIH1 with Al(III) from absorbance data.
Fig. S19. Benesi-Hildebrand plot for stability constant of DBIH2 with Al(III) from absorbance data.

Fig. S20. Benesi-Hildebrand plot for stability constant of DBIH3 with Al(III) from absorbance data.
Fig. S21. Showing Job’s plot for stoichiometry of complex of **DBIH1** with Al(III).

Fig. S22. Showing Job’s plot for stoichiometry of complex of **DBIH2** with Al(III).
Fig. S23. Showing Job’s plot for stoichiometry of complex of DBIH3 with Al(III).

Fig. S24. Changes in fluorescence spectra of DBIH1 (2.5 µM) upon gradual addition of Al(III).
Fig. S25. (a) Benesi-Hildebrand plot for stability constant of DBIH1 with Al(III). (b) Fluorescence intensity of DBIH1 for different concentrations of Al (III) normalized between the maximum emission and the minimum emission (0.0 µM Al (III)) intensity.

Fig. S26. Changes in fluorescence spectra of DBIH2 (2.5 µM) upon gradual addition of Al(III).
Fig. S27. (a) Benesi-Hildebrand plot for stability constant of DBIH2 with Al(III). (b) Fluorescence intensity of DBIH2 for different concentrations of Al(III), normalized between the maximum emission and the minimum emission (0.0 µM Al(III)) intensity.

Fig. S28. Changes in fluorescence spectra of DBIH3 (2.5 µM) upon gradual addition of Al(III).
Fig. S29. (a) Showing Benesi-Hildebrand plot for stability constant of DBIH3 with Al(III). (b) Fluorescence intensity of DBIH3 for different concentrations of Al(III), normalized between the maximum emission and the minimum emission (0.0 µM Al(III)) intensity.

Calculation of change in Free energies of the Al(III) complexes of DBIH1-DBIH3

The equation used for the calculation of free energy of the complexation process is:

\[
\Delta G = -2.303RT\log K_a
\]

Where \(R = 8.314 \text{ JK}^{-1}\text{mol}^{-1} \), \(T = 298 \text{ K} \) and

For **DBIH1**, \(\log K_a = 5.74, \Delta G = -32.75 \text{ KJmol}^{-1} \).

For **DBIH2**, \(\log K_a = 6.39, \Delta G = -36.50 \text{ KJmol}^{-1} \).

For **DBIH3**, \(\log K_a = 4.84, \Delta G = -27.64 \text{ KJmol}^{-1} \).
Fig. S30. The fluorescence responses of **DBIH1** (2.5 µM) towards different Al(III) salts (10 equiv.).

Fig. S31. Competitive Selectivity of **DBIH1** (2.5µM) towards Al(III) (10 equiv.) in the presence of other metal ions (50 equiv.) under study.
Fig. S32. The fluorescence responses of DBIH2 (2.5 µM) towards different Al(III) salts (10 equiv.).

Fig. S33. Competitive Selectivity of DBIH2 (2.5µM) towards Al(III) (10 equiv.) in the presence of other metal ions (50 equiv.) under study.
Fig. S34. The fluorescence responses of **DBIH3** (2.5 µM) towards different Al(III) salts (10 equiv.).

Fig. S35. Competitive Selectivity of **DBIH3** towards Al(III) (10 equiv.) in the presence of other metal ions (50 equiv.) under study.
Fig. S36. (a) 1H NMR (b) IR of DBIH1-Al(III).

Fig. S37. ESI-MS of DBIH1-Al(III).
Fig. S38. (a) 1H NMR (b) IR of DBIH2-Al(III).

Fig. S39. ESI-MS of DBIH2-Al(III).
Fig. S40. (a) 1H NMR (b) IR of DBIH3-Al(III).

Fig. S41. ESI-MS of DBIH3-Al(III).
Fig. S42. Cell viability values (%) estimated by an MTT proliferation test with HeLa and C6 glioma cells at 37°C. Blue bars represent the results with HeLa Cells and red bars represent the results with C6 cells.
Table S1. Crystal data and structure refinement for **DBIH1**.

<table>
<thead>
<tr>
<th>Crystal data and structure refinement for DBIH1.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
</tr>
<tr>
<td>Empirical formula</td>
</tr>
<tr>
<td>Formula weight</td>
</tr>
<tr>
<td>Temperature</td>
</tr>
<tr>
<td>Wavelength</td>
</tr>
<tr>
<td>Crystal system</td>
</tr>
<tr>
<td>Space group</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
</tr>
<tr>
<td>a</td>
</tr>
<tr>
<td>b</td>
</tr>
<tr>
<td>c</td>
</tr>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>Z</td>
</tr>
<tr>
<td>Density (calculated)</td>
</tr>
<tr>
<td>Absorption coefficient</td>
</tr>
<tr>
<td>F(000)</td>
</tr>
<tr>
<td>Crystal size</td>
</tr>
<tr>
<td>Theta range for data collection</td>
</tr>
<tr>
<td>Index ranges</td>
</tr>
<tr>
<td>Reflections collected</td>
</tr>
<tr>
<td>Independent reflections</td>
</tr>
<tr>
<td>Completeness to theta = 25.242°</td>
</tr>
<tr>
<td>Refinement method</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
</tr>
<tr>
<td>Goodness-of-fit on F(^2)</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
</tr>
<tr>
<td>R indices (all data)</td>
</tr>
<tr>
<td>Extinction coefficient</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
</tr>
<tr>
<td>CCDC Number</td>
</tr>
</tbody>
</table>
Table S2. Showing important hydrogen bonds in DBIH1 (Å, °)

<table>
<thead>
<tr>
<th></th>
<th>X...Y</th>
<th>H...Y</th>
<th>X-H...Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>O2-H2A...N2</td>
<td>2.678(4)</td>
<td>1.96(3)</td>
<td>145</td>
</tr>
<tr>
<td>O5-H5A...N4</td>
<td>2.717(4)</td>
<td>2.03(3)</td>
<td>139</td>
</tr>
<tr>
<td>N1-H1B...O5</td>
<td>3.193(4)</td>
<td>2.26(2)</td>
<td>175</td>
</tr>
<tr>
<td>N1-H1B...O6</td>
<td>3.157(4)</td>
<td>2.67(3)</td>
<td>113</td>
</tr>
<tr>
<td>N3-H3B...O3</td>
<td>2.876(4)</td>
<td>2.36(3)</td>
<td>113</td>
</tr>
<tr>
<td>N3-H3B...O2</td>
<td>3.398(4)</td>
<td>2.46(3)</td>
<td>172</td>
</tr>
<tr>
<td>O2-H2A...O6</td>
<td>3.152(4)</td>
<td>2.63(3)</td>
<td>122</td>
</tr>
<tr>
<td>O3-H3A...O4</td>
<td>2.655(3)</td>
<td>1.84(3)</td>
<td>161</td>
</tr>
<tr>
<td>O3-H3A...N4</td>
<td>2.960(4)</td>
<td>2.76(3)</td>
<td>95</td>
</tr>
<tr>
<td>O5-H5A...O3</td>
<td>2.801(5)</td>
<td>2.18(4)</td>
<td>131</td>
</tr>
<tr>
<td>O6-H6A...N2</td>
<td>3.122(1)</td>
<td>2.76(3)</td>
<td>107</td>
</tr>
<tr>
<td>O6-H6A...O1</td>
<td>2.668(4)</td>
<td>1.86(4)</td>
<td>161</td>
</tr>
</tbody>
</table>

(i) \(x, y+1/2+1, z+1/2\) (ii) \(-x+1, -y+1, -z+1\) (iii) \(-x+1, +y-1/2, -z+1/2\)

(iv) \(-x+1, +y-1/2, -z+1/2+1\) (v) \(-x+1, +y+1/2, -z+1/2+1\) (vi) \(-x+1, +y+1/2, -z+1/2\)