Supporting Information

A novel chemosensor with visible light excitability for sensing Zn2+ in physiological medium and in HeLa cells

Barun Kumar Datta,a Durairaj Thiyagarajan,b Soham Samanta,a Aiyagari Ramesh,b and Gopal Das.a

aDepartment of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.

b Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Fig. S1: 1H- NMR spectra of L_1 in DMSO-d_6.
Fig. S2: Expanded 1H- NMR spectra of L$_4$ in DMSO-d$_6$.
Fig. S3: 13C- NMR spectra of L1 in DMSO-d$_6$.
Fig. S4: Expanded 13C- NMR spectra of L₁ in DMSO-d₆.
Fig. S5: 1H- NMR spectra of L_2 in CDCl$_3$.
Fig. S6: Expanded 1H- NMR spectra of L$_2$ in CDCl$_3$.
Fig. S7: 13C- NMR spectra of L$_2$ in CDCl$_3$.
Fig. S8: Mass spectrum of \(\text{L}_1 \) (positive mode), Expected \(m/z \) for \(\text{C}_{21}\text{H}_{19}\text{N}_6\text{O}_3 \) \((\text{L}_1+\text{H})^+ \) = 403.1519, Found 403.1546.
Fig. S9: Mass spectrum of zinc complex of L_1 (positive mode). Expected m/z for $C_{23}H_{21}Cl_3N_7O_{15}Zn_2$ (L_1+2Zn+3ClO$_4$+CH$_3$CN) = 869.8713, found 869.8240.
Fig. S10: Expanded mass spectrum of zinc complex of L_1 (positive mode).
Fig. S11: Job’s plot between \(L_1 \) and \(\text{Zn}^{2+} \).

Fig. S12: Benesi–Hildebrand plot between \(L_1 \) and \(\text{Zn}^{2+} \).
Fig. S13: Visual color change upon the addition of Zn$^{2+}$ to L$_1$ solution.
Fig. S14: 1H-NMR titration of L_1 with Zn^{2+} in DMSO-d_6.
Cytotoxicity assay for L$_1$ and L$_1$-Zn complex

A standard MTT assay was performed to determine the cytotoxic effect of L$_1$ and L$_1$–Zn complex on HeLa cells. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) solution was procured from Sigma-Aldrich, USA. Initially HeLa cells were grown in 25 cm2 tissue culture flask in Dulbecco’s modified Eagle medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), penicillin (100g/mL) and streptomycin (100µg/mL) at 37°C in a CO$_2$ incubator. Prior to MTT assay, cells were seeded onto 96-well tissue culture plates (approximately 104 cells per well) and incubated with various concentrations of compound L$_1$ and L$_1$–Zn complex (5.0µM, 12.5µM, 15µM, 25µM and 50µM) made in DMEM for a period of 24h. HeLa cells treated with DMSO or Zn(ClO$_4$)$_2$ alone were also included in parallel sets. Following 24 h incubation, the growth media was carefully aspirated and fresh DMEM containing MTT solution was added to the cells and incubated for 3–4 h at 37°C. Subsequently, the MTT solution was removed and the insoluble colored formazan product was solubilized in DMSO and its absorbance was measured in a microtitre plate reader (Infinite M200, TECAN, Switzerland) at 550 nm. MTT assay for every sample was performed in six sets. Data analysis and calculation of standard deviation was performed with Microsoft Excel 2010 (Microsoft Corporation, USA).

![Figure S15](image_url)

Fig. S15: MTT assay to determine the cytotoxic effect of compound L$_1$ and L$_1$–Zn complex on HeLa cells.
Fig. S16: Mass spectrum of L₂ (positive mode), Expected m/z for C₂₀H₁₇N₆O₂ (L₂+H)⁺ = 373.1413, Found 373.1426.
Table S1. Selected orbitals and their energies for L_1 at B3LYP/6-31G(d,p).

<table>
<thead>
<tr>
<th>Occupied Orbitals</th>
<th>Energy (eV)</th>
<th>Vacant Orbitals</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO -2</td>
<td>-6.6684</td>
<td>LUMO</td>
<td>-1.7665</td>
</tr>
<tr>
<td>HOMO -1</td>
<td>-5.9307</td>
<td>LUMO +1</td>
<td>-1.4209</td>
</tr>
<tr>
<td>HOMO</td>
<td>-5.7751</td>
<td>LUMO +2</td>
<td>-1.1535</td>
</tr>
</tbody>
</table>
Table S2. Selected orbitals and their energies for $\text{L}_1\text{-Zn}^{2+}$ complex at B3LYP/6-31G(d,p).

<table>
<thead>
<tr>
<th>Occupied Orbitals</th>
<th>Energy (eV)</th>
<th>Vacant Orbitals</th>
<th>Energy (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMO -2</td>
<td>-9.9906</td>
<td>LUMO</td>
<td>-5.3925</td>
</tr>
<tr>
<td>HOMO -1</td>
<td>-9.5457</td>
<td>LUMO+1</td>
<td>-5.1796</td>
</tr>
<tr>
<td>HOMO</td>
<td>-9.0872</td>
<td>LUMO+2</td>
<td>-4.7617</td>
</tr>
</tbody>
</table>

Reference: