Supporting information

A tryptophan responsive fluorescent and wettable dual-signal switch

Xiaoyan Zhang, Jing Li, Ningmei Feng, Li Luo, Zhen Dai, Li Yang, Demei Tian* and Haibing Li*

Key Laboratory of Pesticide & Chemical Biology (CCNU), Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
tiandm@mail.ccnu.edu.cn; lhbing@mails.ccnu.edu.cn

Contents

1. NMR and ESI-MS spectrum of C4DA ...Page S2-S3
 1H NMR spectra of C4DA ...Page S2
 13C NMR spectra of C4DA ..Page S3
2. Continuous variation plot of the C4DA-Trp systemPage S4
3. 1H NMR and NOESY Spectra of the interactionPage S5-S7
 1H NMR Spectra of the interaction ..Page S5-S6
 NOESY Spectra of the interaction ..Page S7
4. DFT Computational Studies ..Page S8
5. Wettability selectively recognition of Trp and some control experiments on C4DA SAMs
 ...Page S9-S12
1. NMR Spectra and ESI-MS spectrum of C4DA

Figure S1. 1H NMR of C4DA (CDCl$_3$, 400 MHz, 298 K).
Figure S2. 13C NMR of C4DA (DMSO-d$_6$, 400 MHz, 298 K).
2. Continuous variation plot of the C4DA-Trp system

Figure S3. Continuous variation plot of the C4DA-Trp system ([C4DA] + [Trp] = 2.0 × 10^{-3} molL^{-1}). Job plot has a peak with a molar fraction of 0.5 and indicates the conjugating ratio of C4DA and Trp was 1:1.
3. NMR spectra of the interaction

Figure S4. 1H NMR spectra (d$_6$-DMSO, 600 MHz, 298 K) of (a) C4DA (6 mM), (b) C4DA and Trp (6 mM each), (c) Trp (6 mM). Insertion: Part of 1H NMR spectra (d$_6$-DMSO, 600 MHz, 298 K) of (a) C4DA (6 mM), (b) C4DA and Trp (6 mM each), (c) Trp (6 mM). The result indicates the interact between C4DA and Trp.
Figure S5. Part of 1H NMR spectra (d$_6$-DMSO, 600 MHz, 298 K) of (a) C4DA (6 mM), (b) C4DA and Trp (6 mM each), (c) Trp (6 mM). The result indicates the interact between C4DA and Trp.
Figure S6. NOESY of the mixture of C4DA and Trp (6 mM each, DMSO, 600 MHz, 298 K), which displayed NOEs between indole ring and anthracene unit.
4. DFT Computational Studies

Figure S7. A view of the optimized structure of the host-guest complex, which shows that the indole ring of Trp inserted into the upper rim of the cavity and the carboxyl exposed outside the cavity of the calixarene. Note: Partial hydrogen atoms of the host and guest are omitted for clarity. The host C4DA was yellow, the guest Trp was also yellow, oxygen atoms were red, nitrogen atoms were blue and hydrogen atoms were white.
5. Wettability selectively recognition of Trp and some control experiments on C4DA SAMs

Figure S8. Contact angle variation \[\Delta CA = (CA_{control} - CA)/ CA_{control}\] histogram for the C4DA SAMs in the presence of four guests, which indicates the selectively wettability responsive of C4DA toward Trp.
Figure S9. CAs with various concentrations of Trp (0.05 ± 0.01 mL, 1.0×10⁻³ – 1.0×10⁻⁶ M). It clearly shows that the detection limit for Trp is 1.0×10⁻⁶ mol/L.
Figure S10. Effect of pH on the recognition of Trp on C4DA-SAMs. The results show that the C4DA-SAMs were acid and alkali resistant.
Figure S11. Contact angle of C4DA SAMs in the presence of indole and its derivatives. This result suggests that the hydrophilic unit of Trp is important for the wettability switch.