Electronic Supplementary Information

P,N,N-pincer nickel-catalyzed cross-coupling of aryl fluorides and chlorides

Dan Wu, Zhong-Xia Wang

CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China

Fax: 86-551-63601592; E-mail: zxwang@ustc.edu.cn

Synthesis and characterization of ligand precursors HL2 and HL3 and complexes 3a-3c

![Scheme S-1. Synthesis of ligand precursors and complexes 3a-3c](image)

Experimental details

The reactions were performed under nitrogen atmosphere using standard Schlenk and vacuum line techniques. Solvents were distilled under nitrogen over sodium (toluene, hexane) or sodium/benzophenone (THF, Et₂O) and degassed prior to use. CDCl₃ was purchased from Cambridge Isotope Laboratories and used as received. (DME)NiCl₂,¹ 2-(Bromophenyl)-2'-(dimethylaminophenyl)amine,² and 2-diphenylphosphinophenyl)-2'-(dimethylaminophenyl)amine (HL1)² were prepared according to reported methods. M

Other chemicals were purchased from commercial vendors and used as received. NMR spectra were determined on a Bruker av300 or a Bruker Avance III 400 NMR spectrometer at room temperature using CDCl₃ as solvent. The chemical shifts of the ¹H
NMR spectra were referenced to TMS; the chemical shifts of the 13C NMR spectra were referenced to internal solvent resonances and the chemical shifts of the 31P NMR spectra were referenced to external 85% H$_3$PO$_4$. Elemental analysis was performed using an Elementar Vario EL Cube instrument.

Preparation of (2-Diisopropylphosphinophenyl)-2'-/(dimethylaminophenyl)amine (HL2)

A 2.4 M solution of BunLi in hexane (2.82 cm3, 6.76 mmol) was added dropwise to a stirred solution of (2-bromophenyl-2'-dimethylaminophenyl)amine (0.98 g, 3.38 mmol) in Et$_2$O (20 cm3) at about −80 °C. The mixture was allowed to warm to ambient temperature and stirred for 12 h. The resulting solution was recooled to −80 °C and chlorodiisopropylphosphine (0.53 cm3, 3.38 mmol) was added into the cooled solution. The mixture was warmed to room temperature and stirred for 12 h. Degassed water (10 cm3) and diethyl ether (10 cm3) were added. The organic layer was separated and the aqueous phase was extracted with diethyl ether (5 cm3 × 2). The combined organic phase was dried over MgSO$_4$ and evaporated to dryness under reduced pressure to give an off-white solid of HL2 (0.507 g, 46%). 1H NMR (CDCl$_3$): δ 0.96 (dd, $J = 6.8, 11.6$ Hz, 6H, CHMe$_2$), 1.12 (dd, $J = 6.8, 15.2$ Hz, 6H, CHMe$_2$), 2.08-2.18 (m, 2H, CHMe$_2$), 2.70 (s, 6H, NMe$_2$), 6.86 (t, $J = 7.4$ Hz, 2H, C$_6$H$_4$), 6.95 (t, $J = 7.6$ Hz, 1H, C$_6$H$_4$), 7.08 (d, $J = 8$ Hz, 1H, C$_6$H$_4$), 7.19-7.25 (m, 1H, C$_6$H$_4$), 7.30-7.41 (m, 2H, C$_6$H$_4$), 7.59 (d, $J = 8.4$ Hz, 1H, C$_6$H$_4$). 13C NMR (CDCl$_3$): δ 19.03 (d, $J = 8.9$ Hz), 20.19 (d, $J = 18.3$ Hz), 23.11 (d, $J = 10.7$ Hz), 44.04, 115.92 (d, $J = 2.4$ Hz), 116.00, 119.46 (d, $J = 6.7$ Hz), 120.50, 121.80, 121.95, 123.40, 129.55, 133.67, 137.46, 143.99, 148.63 (d, $J = 18.4$ Hz). 31P NMR (CDCl$_3$): δ −13.61.

Preparation of (2-Dicyclohexylphosphinophenyl)-2'-/(dimethylaminophenyl)amine (HL3)

A 2.4 M solution of BunLi in hexane (3.46 cm3, 8.30 mmol) was added dropwise to a stirred solution of (2-bromophenyl-2'-dimethylaminophenyl)amine (1.21 g, 4.15 mmol) in Et$_2$O (20 cm3) at about −80°C. The mixture was allowed to warm to ambient temperature and stirred for 12 h. After recooling this solution to −80°C chlorodicyclohexylphosphine (0.94 cm3, 4.15 mmol) was added. The resulting mixture was warmed to room temperature and stirred for 12 h. Degassed water (10 cm3) and diethyl ether (10 cm3) were added. The organic phase was separated and the aqueous phase was extracted with diethyl ether (5 cm3 × 2). The combined organic phase was dried over MgSO$_4$ and evaporated to dryness under reduced pressure to
afford a yellow oil. The yellow oil was dissolved in a mixed solvent of degassed ethanol (1 cm³) and hexane (8 cm³). The solution was cooled to −80 °C to give an off-white solid of HBL3 (0.857 g, 51%). ¹H NMR (CDCl₃): δ 0.99-1.38 (m, 10H, Cy), 1.55-1.80 (m, 8H, Cy), 1.82-2.03 (m, 4H, Cy), 2.69 (s, 6H, NMe₂), 6.81-6.99 (m, 3H, C₆H₄), 7.07 (d, J = 8.8 Hz, 1H, C₆H₄), 7.17-7.43 (m, 3H, C₆H₄), 7.55 (d, J = 9.6 Hz, 1H, C₆H₄). ¹³C NMR (CDCl₃): δ 26.52, 27.16 (d, J = 7.9 Hz), 27.37, 27.50, 28.92 (d, J = 7.5 Hz), 30.46 (d, J = 10.8 Hz), 33.02 (d, J = 16.7 Hz), 33.02 (d, J = 10.8 Hz), 44.00, 115.73, 116.25, 119.32, 119.35, 120.54, 121.47 (d, J = 16 Hz), 123.34, 129.47, 134.09, 137.42, 144.05, 148.76 (d, J = 18 Hz). ³¹P NMR (CDCl₃): δ −25.09.

Preparation of [(L1)NiCl] (3a)

A solution of compound HBL1 (0.86 g, 2.16 mmol) in THF (25 cm³) was cooled to about −80 °C. To the solution was added dropwise a 2.4 M solution of Bu"Li in hexane (0.9 cm³, 2.16 mmol) with stirring. The mixture was warmed to room temperature and stirred for 4 h. The resulting solution was added dropwise into a stirred suspension of (DME)NiCl₂ (0.48 g, 2.16 mmol) in THF (15 cm³) at about −80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo, and the residue was dissolved in toluene. The resulting solution was filtered and concentrated to afford green powder of 3a (0.73 g, 69%), mp 236-237 °C. Anal. Calcd for C₂₀H₂₄N₂PNiCl·0.1C₇H₈: C, 64.29; H, 5.01; N, 5.62. Found: C, 64.54; H, 4.92, N, 5.70. ¹H NMR (CDCl₃): δ 3.01 (d, J = 2 Hz, 6H, NMe₂), 6.47 (t, J = 7 Hz, 1H, Ar), 6.54-6.58 (m, 1H, Ar), 6.91-6.98 (m, 2H, Ar), 7.10-7.14 (m, 1H, Ar), 7.16 (dd, J = 1.2, 8 Hz, 1H, Ar), 7.40-7.47 (m, 5H, Ar), 7.48-7.54 (m, 3H, Ar), 7.84-7.92 (m, 4H, Ar). ¹³C NMR (CDCl₃): δ 49.03 (d, J = 2.3 Hz), 115.02, 115.52 (d, J = 11.8 Hz), 116.96, 117.09 (d, J = 7.7 Hz), 120.84, 122.14, 122.68, 127.38, 128.86 (d, J = 11 Hz), 129.15, 129.67, 131.06 (d, J = 2.9 Hz), 132.43 (d, J = 2 Hz), 133.50 (d, J = 10.4 Hz), 133.81, 146.52 (d, J = 2.8 Hz), 149.09 (d, J = 2 Hz), 159.89, 160.11. ³¹P NMR (CDCl₃): δ 26.67.

Preparation of [(L2)NiCl] (3b)
A solution of compound HL2 (0.51 g, 1.54 mmol) in THF (25 cm³) was cooled to about −80 °C. To the solution was added dropwise a 2.4 M solution Bu"Li in hexane (0.64 cm³, 1.54 mmol) with stirring. The mixture was warmed to room temperature and stirred for 4 h. The resulting solution was added dropwise into a stirred suspension of (DME)NiCl₂ (0.34 g, 1.54 mmol) in THF (15 cm³) at about −80 °C. The resulting mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo, and the residue was dissolved in Et₂O and then filtered. Hexane was added into the filtrate to form green crystals of 3b (0.42 g, 65%), mp 151-152 °C. Anal. Calcd for C₂₀H₂₈N₂PNiCl·0.2C₆H₁₄: C, 58.03; H, 7.07; N, 6.38. Found: C, 58.10; H, 6.68, N, 6.46. ¹H NMR (CDCl₃): δ 1.32 (dd, J = 6, 14.8 Hz, 6H, i-Pr), 1.50 (dd, J = 6, 16.4 Hz, 6H, i-Pr), 2.14-2.32 (m, i-Pr), 2.88 (s, 6H, NMe), 6.79-6.89 (m, 1H, Ar), 6.35-6.52 (m, 2H, Ar), 6.98-7.13 (m, 3H, Ar), 7.31-7.47 (m, 2H, Ar). ¹³C NMR (CDCl₃): δ 17.78, 18.70, 24.62 (d, J = 24.3 Hz), 48.50, 114.80, 115.30 (d, J = 10.8 Hz), 116.23 (d, J = 6.8 Hz), 116.45, 119.59, 120.02, 120.72, 127.18, 131.54, 131.87, 146.22, 149.42, 160.94, 161.12. ³¹P NMR (CDCl₃): δ 52.89.

Preparation of [(L₃)NiCl] (3c)

A solution of compound HL3 (0.86 g, 2.10 mmol) in THF (25 cm³) was cooled to about −80 °C. To the solution was added dropwise a 2.4 M solution of Bu"Li in hexane (0.86 cm³, 2.10 mmol) with stirring. The mixture was warmed to room temperature and stirred for 4 h. The resulting solution was added dropwise into a stirred suspension of (DME)NiCl₂ (0.46 g, 2.10 mmol) in THF (15 cm³) at about −80 °C. The mixture was warmed to room temperature and stirred overnight. Volatiles were removed in vacuo. The residue was dissolved in Et₂O and then filtered. Hexane was added into the filtrate to form green crystals of 3c (0.90 g, 86%), mp 180-181°C. Anal. Calcd for C₂₆H₃₆N₂PNiCl: C, 62.24; H, 7.23; N, 5.58. Found: C, 61.75; H, 7.23, N, 5.58. ¹H NMR (CDCl₃): δ 1.14-1.47 (m, 6H, C₆H₁₁), 1.55-2.16 (m, 14H, C₆H₁₁),
2.62 (b, 2H, C₆H₁₁), 2.95 (s, 6H, NMe), 6.42-6.61 (m, 2H, Ar), 6.83-6.97 (m, 1H, Ar), 7.03-7.21 (m, 3H, Ar), 7.35-7.54 (m, 2H, Ar). \(^{13}\)C NMR (CDCl₃): \(\delta\) 26.16, 26.99, 27.10, 27.25, 27.99, 28.53, 33.85, 34.11, 48.53, 114.77, 115.19 (d, \(J = 10.9\) Hz), 116.16 (d, \(J = 6.8\) Hz), 116.37, 120.02, 120.46, 120.69, 127.14, 131.65, 131.79, 146.27, 149.45, 161.00, 161.18. \(^{31}\)P NMR (CDCl₃): \(\delta\) 45.58.

Crystal structure determination

Single crystal of complex 3c was mounted in Lindemann capillaries under nitrogen. Diffraction data were collected at 290(2) K on an Oxford Diffraction Gemini S Ultra diffractometer with mirror-monochromated Cu K\(\alpha\) radiation (\(\lambda = 1.54184\) Å). The structures were solved by direct methods using SHELXS-97\(^3\) and refined against \(F^2\) by full-matrix least-squares using SHELXL-97.\(^4\) Hydrogen atoms were placed in calculated positions. Crystal data and experimental details of the structure determinations are listed in Table 1. CCDC 996222 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table 1 Details of the X-ray structure determination of complex 3c

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>empirical formula</td>
<td>(C_{26}H_{36}ClN_2NiP)</td>
</tr>
<tr>
<td>fw</td>
<td>501.70</td>
</tr>
<tr>
<td>crystal system</td>
<td>orthorhombic</td>
</tr>
<tr>
<td>space group</td>
<td>(P_{na21})</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>19.6835(2)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>8.27190(10)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>31.3730(3)</td>
</tr>
<tr>
<td>(\alpha) (deg)</td>
<td>90.00</td>
</tr>
<tr>
<td>(\beta) (deg)</td>
<td>90.00</td>
</tr>
<tr>
<td>(\gamma) (deg)</td>
<td>90.00</td>
</tr>
<tr>
<td>(V) (Å(^3))</td>
<td>5108.15(9)</td>
</tr>
<tr>
<td>(Z)</td>
<td>8</td>
</tr>
<tr>
<td>(D_{calcd}) (g cm(^{-3}))</td>
<td>1.305</td>
</tr>
<tr>
<td>(F(000))</td>
<td>2128.0</td>
</tr>
<tr>
<td>(\mu) (mm(^{-1}))</td>
<td>2.754</td>
</tr>
<tr>
<td>(2\theta) range for data collecen (deg)</td>
<td>8.98 to 125.52</td>
</tr>
<tr>
<td>no. of reflns collected</td>
<td>29453</td>
</tr>
<tr>
<td>no. of indep reflns ((R_{int}))</td>
<td>7437 (0.0296)</td>
</tr>
</tbody>
</table>
no. of data/restraints/params 7437/1/563

goodness of fit on F^2 1.033

final R indices [$I > 2\sigma(I)$] $R1 = 0.0311$
wR2 = 0.0840

R indices (all data) $R1 = 0.0326$
wR2 = 0.0856

largest diff peak and hole [e Å$^{-3}$] 0.33 and −0.19

References

Copies of 1H, 13C and 31P NMR spectra of complexes 3a-3c
1. [(L1)NiCl] (3a)
31P NMR
Solvent: CDCl$_3$
[[L2]NiCl] (3b)
31p NMR
Solvent: CDCl$_3$
[(L3)NiCl] (3c)

1H NMR
Solvant: CDCl$_3$

13C NMR
Solvant: CDCl$_3$
31p NMR
Solvent: CDCl$_3$
Copies of 1H and 13C NMR spectra of the cross-coupling products

1. 4-Methoxy-4'-methylbiphenyl

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
2. 3-Methoxy-4'-methylbiphenyl

3-Methoxy-4'-methylbiphenyl

1H NMR (CDCl$_3$)

3-Methoxy-4'-methylbiphenyl

13C NMR (CDCl$_3$)
3. 4'-methyl-N,N-dimethylbiphenyl-4-amine

4'-methylN,N-dimethylbiphenyl-4-amine
1H NMR (CDCl$_3$)
4. 3,4-dimethoxy-4'-methylbiphenyl

3,4-dimethoxy-4'-methylbiphenyl

1H NMR (CDCl$_3$)

3,4-dimethoxy-4'-methylbiphenyl

13C NMR (CDCl$_3$)
5. 3',4'- Dimethoxy- N,N-dimethylbiphenyl-4-amine

\[\text{\^{1}H NMR (CDCl3)} \]

\[\text{\^{13}C NMR (CDCl3)} \]
6. 1-Isopropyl-3-(4'-methylbiphenyl-4-yl)-1H-indole

\[\text{H NMR (CDCl}_3) \]

\[\text{C NMR (CDCl}_3) \]

1-Isopropyl-3-(4'-methylbiphenyl-4-yl)-1H-indole
7. (4'-Methylbiphenyl-4-yl)methanol

(4'-Methylbiphenyl-4-yl)methanol

1H NMR (CDCl$_3$)

(4'-Methylbiphenyl-4-yl)methanol

13C NMR (CDCl$_3$)
8. (4'-N, N-Dimethylaminobiphenyl-4-yl)methanol

^1H NMR (CDCl₃)

^13C NMR (CDCl₃)
9. 2'-Methyl-N,N-dimethylbiphenyl-4-amine

2'-MethylN,N-dimethylbiphenyl-4-amine

1H NMR (CDCl$_3$)

2'-MethylN,N-dimethylbiphenyl-4-amine

13C NMR (CDCl$_3$)
10. *N*,*N*-Dimethylbiphenyl-4-amine

N,*N*-Dimethylbiphenyl-4-amine

1H NMR (CDCl$_3$)

1C NMR (CDCl$_3$)
11. \(N,N\)-Dimethyl-(4-naphthalen-1-yl)aniline

\[\text{\(N,N\)-Dimethyl-(4-naphthalen-1-yl)aniline} \]

\[\text{\(^1\)H NMR (CDCl\textsubscript{3})} \]

\[\text{\(^1\)C NMR (CDCl\textsubscript{3})} \]
12. 4'-Methyl-4-(trifluoromethyl)biphenyl

4'-Methyl-4-(trifluoromethyl)biphenyl

1H NMR (CDCl$_3$)

1H NMR (CDCl$_3$)

4'-Methyl-4-(trifluoromethyl)biphenyl

13C NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
13. 2-p-Tolylpyridine

2-p-Tolylpyridine

1H NMR (CDCl$_3$)

2-p-Tolylpyridine

13C NMR (CDCl$_3$)
14. 2-(4-Methoxy-phenyl)pyridine

1H NMR (CDCl3)

2-(4-Methoxy-phenyl)pyridine

13C NMR (CDCl3)
15. \(N,N\)-dimethyl-(4-pyridin-2-yl)benzenamine

\(^1\)H NMR (CDCl₃)
16. 4-Methyl-2-\textit{p}-tolylpyridine

\textbf{\textit{H} NMR (CDCl$_3$)}

\begin{itemize}
\item \textbf{4-Methyl-2-\textit{p}-tolylpyridine}
\item \textbf{C NMR (CDCl$_3$)}
\end{itemize}
17. 3-\textit{p}-Tolylpyridine

3-\textit{p}-Tolylpyridine

1H NMR (CDCl\textsubscript{3})

3-\textit{p}-Tolylpyridine

13C NMR (CDCl\textsubscript{3})
18. 1,4-Di(\(p\)-methylphenyl)benzene

\[\text{1,4-Di}(p\text{-methylphenyl})\text{benzene} \]

\[\begin{align*}
\text{\(^1\text{H NMR (CDCl}_3\))} \\
\text{\(^{13}\text{C NMR (CDCl}_3\))}
\end{align*} \]
19. 1,3,5-tris(\(\rho\)-methylphenyl)benzene

1,3,5-tris(\(\rho\)-methylphenyl)benzene

\(^1\)H NMR (CDCl\(_3\))

1,3,5-tris(\(\rho\)-methylphenyl)benzene

\({}^{13}\)C NMR (CDCl\(_3\))
20. 1-Methoxy-2-(p-toyl)benzoate

1H NMR (CDCl3)

13C NMR (CDCl3)
21. *N,N,2',5'-tetramethylbiphenyl-4-amine*

![N,N,2',5'-tetramethylbiphenyl-4-amine 1H NMR (CDCl3)](image)

![N,N,2',5'-tetramethylbiphenyl-4-amine 13C NMR (CDCl3)](image)
22. 4-Methoxybiphenyl

4-Methoxybiphenyl

1H NMR (CDCl$_3$)

4-Methoxybiphenyl

13C NMR (CDCl$_3$)
23. 4'-Methoxy-4-(trifluoromethyl)biphenyl
24. Dimethyl-(4'-trifluoromethylbiphenyl-4-yl)amine

[dimethyl-(4'-trifluoromethyl-biphenyl-4-yl)-amine 1

1H NMR (CDCl$_3$)

[dimethyl-(4'-trifluoromethyl-biphenyl-4-yl)-amine 13

1C NMR (CDCl$_3$)
25. (4'-Methylbiphenyl-4-yl)(phenyl)methanone

(4'-Methylbiphenyl-4-yl)(phenyl)methanone

1H NMR (CDCl$_3$)

(4'-Methylbiphenyl-4-yl)(phenyl)methanone

13C NMR (CDCl$_3$)
26. (4’-Methoxybiphenyl-4-yl)(phenyl)methanone

(4’-Methoxybiphenyl-4-yl)(phenyl)methanone

H NMR (CDCl₃)

(4’-Methoxybiphenyl-4-yl)(phenyl)methanone

C NMR (CDCl₃)
27. Ethyl 4'-methylbiphenyl-4-carboxylate

Ethyl 4'-Methylbiphenyl-4-carboxylate

1H NMR (CDCl3)

Ethyl 4'-Methylbiphenyl-4-carboxylate

13C NMR (CDCl3)
28. Ethyl 4'-methoxybiphenyl-4-carboxylate

Ethyl 4’-Methoxybiphenyl-4-carboxylate

1H NMR (CDCl$_3$)

Ethyl 4’-methoxybiphenyl-4-carboxylate

13C NMR (CDCl$_3$)
29. \(N,N\)-diethyl-4’-methylbiphenyl-4-carboxamide

\[\text{\(N,N\)-diethyl-4’-methylbiphenyl-4-carboxamide} \]

\[^1\text{H NMR (CDCl}_3\text{)}\]

\[\text{\(N,N\)-diethyl-4’-methylbiphenyl-4-carboxamide} \]

\[^13\text{C NMR (CDCl}_3\text{)}\]
30. N,N-Diethyl-4'-methoxybiphenyl-4-carboxamide
31. 4'-Methylbiphenyl-4-carbonitrile

4'-Methylbiphenyl-4-carbonitrile

1H NMR (CDCl$_3$)

4'-Methylbiphenyl-4-carbonitrile

13C NMR (CDCl$_3$)
32. (4'-Methylbiphenyl-2-yl)(phenyl)methanone

(4'-Methylbiphenyl-2-yl)(phenyl)methanone
1H NMR (CDCl$_3$)

(4'-Methylbiphenyl-2-yl)(phenyl)methanone
13C NMR (CDCl$_3$)
33. (4'-Methoxybiphenyl-2-yl)(phenyl)methanone

(4'-Methoxybiphenyl-2-yl)(phenyl)methanone

^1H NMR (CDCl3)

(4'-Methoxybiphenyl-2-yl)(phenyl)methanone

^13C NMR (CDCl3)
34. 4'-Methylbiphenyl-2-carbonitrile

4'-Methylbiphenyl-2-carbonitrile

1H NMR (CDCl$_3$)

4'-Methylbiphenyl-2-carbonitrile

13C NMR (CDCl$_3$)

4'-Methylbiphenyl-2-carbonitrile
35. 4'-methoxy-2-methylbiphenyl

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
36. (2'-Methylbiphenyl-4-yl)(phenyl)methanone

\[(2'-\text{Methylbiphenyl}-4-\text{yl})(\text{phenyl})\text{methanone} \]

\(^1H \text{NMR (CDCl}_3) \)

\[\text{(2'-Methylbiphenyl-4-yl)(phenyl)methanone} \]

\(^{13}C \text{NMR (CDCl}_3) \)
37. Ethyl 2’-methylbiphenyl-4-carboxylate

\[\text{ethyl 2’-Methylbiphenyl-4-carboxylate} \]

\[\text{1H NMR (CDCl\textsubscript{3})} \]

\[\text{ethyl 2’-Methylbiphenyl-4-carboxylate} \]

\[\text{13C NMR (CDCl\textsubscript{3})} \]
38. \(\text{N,N-Diethyl-2'}-\text{methylbiphenyl-4-carboxamide} \)

\[\begin{array}{c}
\text{N,N-Diethyl-2'}-\text{methylbiphenyl-4-carboxamide} \\
\text{\(^1 \)H NMR (CDCl₃)} \\
\end{array} \]

\[\begin{array}{c}
\text{N,N-Diethyl-2'}-\text{methylbiphenyl-4-carboxamide} \\
\text{\(^{13} \)C NMR (CDCl₃)} \\
\end{array} \]
39. 2-p-Tolyl-nicotinonitrile

1H NMR (CDCl$_3$)

2-p-Tolyl-nicotinonitrile

13C NMR (CDCl$_3$)

2-p-Tolyl-nicotinonitrile
40. 2-Methoxy-6-p-tolylpyridine

[Diagram of 1H NMR spectrum]

2-Methoxy-6-p-tolylpyridine
1H NMR (CDCl$_3$)

[Diagram of 13C NMR spectrum]

2-Methoxy-6-p-tolylpyridine
13C NMR (CDCl$_3$)
41. 2-(4-Methylphenyl)-4-methylquinoline

1H NMR (CDCl3)

13C NMR (CDCl3)
42. 2-(4-Methoxyphenyl)-4-methylquinoline

2-(4-Methoxyphenyl)-4-methylquinoline 1H NMR (CDCl₃)

2-(4-Methoxyphenyl)-4-methylquinoline 13C NMR (CDCl₃)
43. (4′-(Trifluoromethyl)biphenyl-4-yl)(phenyl)methanone

\((4'-(\text{trifluoromethyl})\text{biphenyl-4-yl})(\text{phenyl})\text{methanone}\)

\(^1\text{H NMR}\ (\text{CDCl}_3)

\[^{13}\text{C NMR}\ (\text{CDCl}_3)\)
44. Ethyl 4’-(trifluoromethyl)biphenyl-4-carboxylate

Ethyl 4’-(trifluoromethyl)biphenyl-4-carboxylate 1H NMR (CDCl$_3$)

Ethyl 4’-(trifluoromethyl)biphenyl-4-carboxylate 13C NMR (CDCl$_3$)
45. N,N-Diethyl-4'-{(trifluoromethyl)biphenyl-4-carboxamide

\(^1H \text{ NMR (CDCl}_3 \)

\(^{13} \text{C NMR (CDCl}_3 \)
46. (4'- (trifluoromethyl) biphenyl-2-yl)(phenyl) methanone

(4'- (trifluoromethyl) biphenyl-2-yl)(phenyl) methanone

H NMR (CDCl₃)

(4'- (trifluoromethyl) biphenyl-2-yl)(phenyl) methanone

C NMR (CDCl₃)
47. 2-(4-(trifluoromethyl)phenyl)furan

2-(4-(trifluoromethyl)phenyl)furan

1H NMR (CDCl$_3$)

2-(4-(trifluoromethyl)phenyl)furan

13C NMR (CDCl$_3$)
48. (4-(Furan-2-yl)phenyl)(phenyl)methanone

(4-(Furan-2-yl)phenyl)(phenyl)methanone

1H NMR (CDCl$_3$)

13C NMR (CDCl$_3$)
49. Ethyl 4-(furan-2-yl)benzoate

Ethyl 4-(furan-2-yl)benzoate

1H NMR (CDCl$_3$)

Ethyl 4-(furan-2-yl)benzoate

13C NMR (CDCl$_3$)
50. N,N-Diethyl-4-(furan-2-yl)carboxamide

N,N-Diethyl-4-(furan-2-yl)carboxamide
1H NMR (CDCl$_3$)

N,N-Diethyl-4-(furan-2-yl)carboxamide
13C NMR (CDCl$_3$)
51. 2-Furan-2-yl-benzonitrile

2-Furan-2-yl-benzonitrile

1H NMR (CDCl$_3$)

2-Furan-2-yl-benzonitrile

13C NMR (CDCl$_3$)